Abstract

Laser induced director axis reorientation and order parameter changes in nematic liquid crystals give rise to extremely nonlinear optical responses characterized by nonlinear index coefficients that can reach values exceeding 103cm2/Watt. An historical account and critical analyses of the theoretical backgrounds and experimental observations of several exemplary nonlinear optical phenomena are presented. Emphasis is placed on identifying and detailing the critical roles played by unique properties of nematic liquid crystals in these processes, including self-action effects, wave mixing, and switching phenomena for a variety of interaction geometries.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, Nonlinear Optics (Benjamin, 1965).
  2. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
  3. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010).
    [CrossRef]
  4. F. Reinitzer, “Beitrage zur Kenntniss des Cholesterins,” Wiener Monatschr, Fur Chem. 9, 421–441 (1888).
  5. See, for example, F. C. Frank, “On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
    [CrossRef]
  6. P. G. deGennes, The Physics of Liquid Crystals (Oxford University Press, 1974).
  7. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
    [CrossRef]
  8. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
    [CrossRef]
  9. M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).
  10. I. Freund and P. M. Rentzepi, “Second-harmonic generation in liquid crystals,” Phys. Rev. Lett. 18, 393–394 (1967).
    [CrossRef]
  11. G. Durand and C.H. Lee, “On the origin of second harmonic generation of light in liquid crystals,” Molecular Crystals 5, 171–183 (1968).
    [CrossRef]
  12. S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
    [CrossRef]
  13. See, for example, G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
    [CrossRef]
  14. R. M. Herman and R. J. Serinko, “Nonlinear-optical processes in nematic liquid crystals near Freedericksz transitions,” Phys. Rev. A 19, 1757–1769 (1979).
    [CrossRef]
  15. I. C. Khoo and Shu-Lu Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freedericks transition,” Appl. Phys. Lett. 37, 3–4 (1980).
    [CrossRef]
  16. A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).
  17. B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).
  18. I. C. Khoo, “Optically induced molecular reorientation and third order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. A 23, 2077–2081 (1981).
    [CrossRef]
  19. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical field induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 1411–1414 (1981).
    [CrossRef]
  20. I. C. Khoo, “Re-examination of the theory and experimental results of optically induced molecular reorientation and nonlinear diffractions in nematic liquid crystals: spatial frequency and temperature dependence,” Phys. Rev. A 27, 2747–2750 (1983).
    [CrossRef]
  21. H. L. Ong, “Optically induced Freedericksz transition and bistability in a nematic liquid crystal,” Phys. Rev. A 28, 2393–2407 (1983).
    [CrossRef]
  22. N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, “Orientational optical nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
    [CrossRef]
  23. I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron. 21, 329–335 (1985).
    [CrossRef]
  24. H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular-reorientation and laser-heating in a nematic liquid-crystal,” Phys. Rev. A 30, 1453–1460 (1984).
    [CrossRef]
  25. I. C. Khoo, “Nonlinear light scattering by laser and dc field induced molecular reorientations in nematic liquid crystal film,” Phys. Rev. A 25, 1040–1048 (1982).
    [CrossRef]
  26. I. Janossy and T. Kosa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17, 1183–1185 (1992).
    [CrossRef]
  27. H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystal,” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994).
    [CrossRef]
  28. I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal,” IEEE J. Quantum Electron. , 29, 1444–1447 (1993).
    [CrossRef]
  29. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). See also [75].
    [CrossRef]
  30. E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994).
  31. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid crystal film,” Opt. Lett. 20, 2137–2139 (1995).
    [CrossRef]
  32. I. C. Khoo, “Optical-dc-field induced space charge fields and photorefractive-like holographic grating formation in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 53–66 (1996).
    [CrossRef]
  33. R. Macdonald, P. Meindl, G. Chilaya, and D. Sikharulidze, “Photo-excitation of space charge fields and reorientation of a nematic liquid crystal of discotic molecules,” Opt. Commun. 150, 195–200 (1998).
    [CrossRef]
  34. I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, DC voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253–255 (1998).
    [CrossRef]
  35. L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
    [CrossRef]
  36. L. Lucchetti, M. Gentili, and F. Simoni, “Effects leading to colossal optical nonlinearity in dye-doped liquid crystals, IEEE J. Sel. Top. Quantum Electron. 12, 422–430 (2006).
    [CrossRef]
  37. E. Brasselet, “Spin-orbit optical cross-phase-modulation,” Phys. Rev. A 82, 063836 (2010).
    [CrossRef]
  38. J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
    [CrossRef]
  39. I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011).
    [CrossRef]
  40. K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011).
    [CrossRef]
  41. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
    [CrossRef]
  42. V. Y. Reshetnyak, I. P. Pinkevych, G. Cook, D. R. Evans, and T. J. Sluckin, “Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell,” Phys. Rev. E 81, 031705 (2010).
    [CrossRef]
  43. L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010).
    [CrossRef]
  44. L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
    [CrossRef]
  45. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
    [CrossRef]
  46. See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein.
    [CrossRef]
  47. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
    [CrossRef]
  48. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express 11, 2589–2596 (2003).
    [CrossRef]
  49. A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
    [CrossRef]
  50. R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure,” J. Opt. Soc. Am. B 211939–1947 (2004).
    [CrossRef]
  51. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photon. 4, 676–685 (2010).
    [CrossRef]
  52. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
    [CrossRef]
  53. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18, 9651–9657 (2010) and references therein.
    [CrossRef]
  54. N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals, J. Opt. Soc. Am. B 15, 1912–1917 (1998).
    [CrossRef]
  55. I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991).
    [CrossRef]
  56. H. J. Eichler, and R. Macdonald, “Flow alignment and inertial effects in picoseconds laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666–2669 (1991).
    [CrossRef]
  57. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
    [CrossRef]
  58. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic liquid crystal film,” Opt. Lett. 6, 411–413 (1981).
  59. I. C. Khoo, “Theory of optically induced molecular reorientations and quantitative experiments on wave mixing and the self-focusing of light,” Phys. Rev. A 25, 1636–1644 (1982).
    [CrossRef]
  60. E. Santamato, and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser-beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).
    [CrossRef]
  61. I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987).
    [CrossRef]
  62. I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471–482 (1998).
    [CrossRef]
  63. I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4, 432–442 (1999).
    [CrossRef]
  64. I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987).
    [CrossRef]
  65. V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
    [CrossRef]
  66. F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).
    [CrossRef]
  67. C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005).
    [CrossRef]
  68. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
    [CrossRef]
  69. C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
    [CrossRef]
  70. A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
    [CrossRef]
  71. Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Soliton bending and routing induced by interaction with curved surfaces in nematic liquid crystals,” Opt. Lett. 35, 1692–1694 (2010).
    [CrossRef]
  72. I. C. Khoo, J. H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25, 1931–1937 (2008) and references therein.
    [CrossRef]
  73. I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
    [CrossRef]
  74. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
    [CrossRef]
  75. A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
    [CrossRef]
  76. B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).
  77. I. C. Khoo and J. Ding, “All-optical cw laser polarization conversion at 1.55 micron by two beam coupling in nematic liquid crystal film,” Appl. Phys. Lett. 81, 2496–2498 (2002).
    [CrossRef]
  78. I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722–6733 (2000).
    [CrossRef]
  79. P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603–5612 (1997).
    [CrossRef]
  80. I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal film,” IEEE J. Quantum Electron. 32, 525–534 (1996).
    [CrossRef]
  81. I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods doped nematic liquid crystal—bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443–450 (2006).
    [CrossRef]
  82. I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
    [CrossRef]
  83. H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals, Opt. Lett. 22, 1144–1146 (1997).
    [CrossRef]
  84. See, for example, G. Cook, V. Y. Reshetnyak, R. F. Ziolo, S. A. Basun, P. P. Banerjee, and D. R. Evans, “Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles,” Opt. Express 18, 17339–17345 (2010) and references quoted therein.
    [CrossRef]
  85. A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
    [CrossRef]
  86. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
    [CrossRef]
  87. I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
    [CrossRef]
  88. See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
    [CrossRef]
  89. See, for example, N. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into reality,” J. Opt. Soc. Am. B 26, B161–169 (2009) and the references therein.
    [CrossRef]
  90. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
    [CrossRef]
  91. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  92. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nano-sphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and Terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006).
    [CrossRef]
  93. I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
    [CrossRef]
  94. G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011).
    [CrossRef]
  95. G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
    [CrossRef]
  96. O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. USA 108, 5143–5144 (2011).
    [CrossRef]
  97. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
    [CrossRef]
  98. J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
    [CrossRef]
  99. H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
    [CrossRef]
  100. B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
    [CrossRef]
  101. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
    [CrossRef]
  102. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
    [CrossRef]
  103. S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
    [CrossRef]
  104. N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
    [CrossRef]
  105. P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
    [CrossRef]

2011

I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011).
[CrossRef]

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011).
[CrossRef]

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. USA 108, 5143–5144 (2011).
[CrossRef]

J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
[CrossRef]

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011).
[CrossRef]

See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein.
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

2010

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010).
[CrossRef]

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18, 9651–9657 (2010) and references therein.
[CrossRef]

Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Soliton bending and routing induced by interaction with curved surfaces in nematic liquid crystals,” Opt. Lett. 35, 1692–1694 (2010).
[CrossRef]

See, for example, G. Cook, V. Y. Reshetnyak, R. F. Ziolo, S. A. Basun, P. P. Banerjee, and D. R. Evans, “Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles,” Opt. Express 18, 17339–17345 (2010) and references quoted therein.
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
[CrossRef]

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
[CrossRef]

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
[CrossRef]

A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
[CrossRef]

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photon. 4, 676–685 (2010).
[CrossRef]

V. Y. Reshetnyak, I. P. Pinkevych, G. Cook, D. R. Evans, and T. J. Sluckin, “Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell,” Phys. Rev. E 81, 031705 (2010).
[CrossRef]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010).
[CrossRef]

E. Brasselet, “Spin-orbit optical cross-phase-modulation,” Phys. Rev. A 82, 063836 (2010).
[CrossRef]

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[CrossRef]

2009

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

See, for example, N. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into reality,” J. Opt. Soc. Am. B 26, B161–169 (2009) and the references therein.
[CrossRef]

2008

I. C. Khoo, J. H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25, 1931–1937 (2008) and references therein.
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

2006

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nano-sphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and Terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006).
[CrossRef]

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods doped nematic liquid crystal—bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443–450 (2006).
[CrossRef]

L. Lucchetti, M. Gentili, and F. Simoni, “Effects leading to colossal optical nonlinearity in dye-doped liquid crystals, IEEE J. Sel. Top. Quantum Electron. 12, 422–430 (2006).
[CrossRef]

2005

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005).
[CrossRef]

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

2004

R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure,” J. Opt. Soc. Am. B 211939–1947 (2004).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
[CrossRef]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express 11, 2589–2596 (2003).
[CrossRef]

2002

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

I. C. Khoo and J. Ding, “All-optical cw laser polarization conversion at 1.55 micron by two beam coupling in nematic liquid crystal film,” Appl. Phys. Lett. 81, 2496–2498 (2002).
[CrossRef]

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

2000

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722–6733 (2000).
[CrossRef]

1999

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4, 432–442 (1999).
[CrossRef]

1998

1997

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603–5612 (1997).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals, Opt. Lett. 22, 1144–1146 (1997).
[CrossRef]

1996

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal film,” IEEE J. Quantum Electron. 32, 525–534 (1996).
[CrossRef]

V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
[CrossRef]

I. C. Khoo, “Optical-dc-field induced space charge fields and photorefractive-like holographic grating formation in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 53–66 (1996).
[CrossRef]

1995

1994

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). See also [75].
[CrossRef]

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994).

H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystal,” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994).
[CrossRef]

1993

I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal,” IEEE J. Quantum Electron. , 29, 1444–1447 (1993).
[CrossRef]

1992

1991

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991).
[CrossRef]

H. J. Eichler, and R. Macdonald, “Flow alignment and inertial effects in picoseconds laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666–2669 (1991).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

1987

1986

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, “Orientational optical nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[CrossRef]

1985

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron. 21, 329–335 (1985).
[CrossRef]

B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).

1984

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular-reorientation and laser-heating in a nematic liquid-crystal,” Phys. Rev. A 30, 1453–1460 (1984).
[CrossRef]

E. Santamato, and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser-beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).
[CrossRef]

1983

I. C. Khoo, “Re-examination of the theory and experimental results of optically induced molecular reorientation and nonlinear diffractions in nematic liquid crystals: spatial frequency and temperature dependence,” Phys. Rev. A 27, 2747–2750 (1983).
[CrossRef]

H. L. Ong, “Optically induced Freedericksz transition and bistability in a nematic liquid crystal,” Phys. Rev. A 28, 2393–2407 (1983).
[CrossRef]

1982

I. C. Khoo, “Nonlinear light scattering by laser and dc field induced molecular reorientations in nematic liquid crystal film,” Phys. Rev. A 25, 1040–1048 (1982).
[CrossRef]

I. C. Khoo, “Theory of optically induced molecular reorientations and quantitative experiments on wave mixing and the self-focusing of light,” Phys. Rev. A 25, 1636–1644 (1982).
[CrossRef]

1981

I. C. Khoo, “Optically induced molecular reorientation and third order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. A 23, 2077–2081 (1981).
[CrossRef]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical field induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 1411–1414 (1981).
[CrossRef]

M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic liquid crystal film,” Opt. Lett. 6, 411–413 (1981).

1980

I. C. Khoo and Shu-Lu Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freedericks transition,” Appl. Phys. Lett. 37, 3–4 (1980).
[CrossRef]

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).

B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).

1979

R. M. Herman and R. J. Serinko, “Nonlinear-optical processes in nematic liquid crystals near Freedericksz transitions,” Phys. Rev. A 19, 1757–1769 (1979).
[CrossRef]

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

1977

S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
[CrossRef]

1974

See, for example, G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

1968

G. Durand and C.H. Lee, “On the origin of second harmonic generation of light in liquid crystals,” Molecular Crystals 5, 171–183 (1968).
[CrossRef]

1967

I. Freund and P. M. Rentzepi, “Second-harmonic generation in liquid crystals,” Phys. Rev. Lett. 18, 393–394 (1967).
[CrossRef]

1958

See, for example, F. C. Frank, “On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

1888

F. Reinitzer, “Beitrage zur Kenntniss des Cholesterins,” Wiener Monatschr, Fur Chem. 9, 421–441 (1888).

Abbott, S.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[CrossRef]

Aieta, F.

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

Alberucci, A.

See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein.
[CrossRef]

A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
[CrossRef]

Alfano, R. R.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

Alsing, P. M.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Arakelian, S. M.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical field induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 1411–1414 (1981).
[CrossRef]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic liquid crystal film,” Opt. Lett. 6, 411–413 (1981).

Arecchi, F. T.

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).
[CrossRef]

Asquini, R.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

Assanto, G.

See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein.
[CrossRef]

A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Banerjee, P. P.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Barnik, M. I.

M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).

Bartolino, R.

V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
[CrossRef]

Basun, S. A.

Baughman, R. H.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[CrossRef]

Beccherelli, R.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

Beeckman, J.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Bjarklev, A.

Blach, J. F.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[CrossRef]

Blinov, L. M.

M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (Benjamin, 1965).

Boccaletti, S.

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).
[CrossRef]

Bortolozzo, U.

A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
[CrossRef]

Bracalente, F.

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

Broeng, J.

Bunning, T. J.

Cao, W.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

Caputo, R.

Carbone, V.

V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
[CrossRef]

Cardimona, D. A.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Chen, K.

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods doped nematic liquid crystal—bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443–450 (2006).
[CrossRef]

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
[CrossRef]

Chen, P. H.

Chen, S.

Chen, Z.

Chigrinov, V. G.

See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
[CrossRef]

Chilaya, G.

R. Macdonald, P. Meindl, G. Chilaya, and D. Sikharulidze, “Photo-excitation of space charge fields and reorientation of a nematic liquid crystal of discotic molecules,” Opt. Commun. 150, 195–200 (1998).
[CrossRef]

Chillage, L.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).

Christodoulides, D. N.

Cipparrone, G.

V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
[CrossRef]

Clark, N. A.

S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
[CrossRef]

Cloutier, S. G.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photon. 4, 676–685 (2010).
[CrossRef]

Conti, C.

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

Cook, G.

Criante, L.

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010).
[CrossRef]

d’Alessandro, A.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

D’Alessandro, G.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011).
[CrossRef]

D’Britto, V.

S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
[CrossRef]

Daly, K. R.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011).
[CrossRef]

De Luca, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

De Rossi, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010).
[CrossRef]

deGennes, P. G.

P. G. deGennes, The Physics of Liquid Crystals (Oxford University Press, 1974).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Desyatnikov, A. S.

Di Fabrizio, M.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

Diaz, A.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nano-sphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and Terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006).
[CrossRef]

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
[CrossRef]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Ding, J.

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
[CrossRef]

I. C. Khoo and J. Ding, “All-optical cw laser polarization conversion at 1.55 micron by two beam coupling in nematic liquid crystal film,” Appl. Phys. Lett. 81, 2496–2498 (2002).
[CrossRef]

Dorozhkin, A. M.

M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).

Dubtsov, A. V.

See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
[CrossRef]

Durbin, S. D.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic liquid crystal film,” Opt. Lett. 6, 411–413 (1981).

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical field induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 1411–1414 (1981).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Edler, K. J.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

Eichler, H. J.

H. J. Eichler, and R. Macdonald, “Flow alignment and inertial effects in picoseconds laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666–2669 (1991).
[CrossRef]

Emoto, A.

A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
[CrossRef]

Etchegoin, P.

P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603–5612 (1997).
[CrossRef]

Evans, D. R.

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Finn, G. M.

Fodor-Csorba, K.

I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011).
[CrossRef]

Francescangeli, O.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

Frank, F. C.

See, for example, F. C. Frank, “On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Freund, I.

I. Freund and P. M. Rentzepi, “Second-harmonic generation in liquid crystals,” Phys. Rev. Lett. 18, 393–394 (1967).
[CrossRef]

Gearheart, L. A.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

Gentili, M.

L. Lucchetti, M. Gentili, and F. Simoni, “Effects leading to colossal optical nonlinearity in dye-doped liquid crystals, IEEE J. Sel. Top. Quantum Electron. 12, 422–430 (2006).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Gilardi, G.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

Gong, Q.

J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
[CrossRef]

Graugnard, E.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Gu, Y.

J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
[CrossRef]

Guenther, B. D.

Hao, Q.

B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Henninot, J. F.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[CrossRef]

Herman, R. M.

R. M. Herman and R. J. Serinko, “Nonlinear-optical processes in nematic liquid crystals near Freedericksz transitions,” Phys. Rev. A 19, 1757–1769 (1979).
[CrossRef]

Hermann, D. S.

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

Hoke, L.

Hou, J. Y.

Hrozhyk, U. A.

Hsiung, H.

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular-reorientation and laser-heating in a nematic liquid-crystal,” Phys. Rev. A 30, 1453–1460 (1984).
[CrossRef]

Huang, D. H.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Huang, J.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

Huang, T. J.

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Ikeda, T.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

Izdebskaya, Y. V.

Jain, S.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Jana, N. R.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

Janossy, I.

Jánossy, I

I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011).
[CrossRef]

Jarema, M.

Jen, S.

S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
[CrossRef]

Johnson, C. J.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

Juluri, B. K.

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Kaczmarek, M.

Kanazawa, A.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

Karpierz, M. A.

Kawatsuki, N.

A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals, Opt. Lett. 22, 1144–1146 (1997).
[CrossRef]

Khoo, I. C.

J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
[CrossRef]

G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
[CrossRef]

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010).
[CrossRef]

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

I. C. Khoo, J. H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25, 1931–1937 (2008) and references therein.
[CrossRef]

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods doped nematic liquid crystal—bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443–450 (2006).
[CrossRef]

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nano-sphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and Terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006).
[CrossRef]

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
[CrossRef]

I. C. Khoo and J. Ding, “All-optical cw laser polarization conversion at 1.55 micron by two beam coupling in nematic liquid crystal film,” Appl. Phys. Lett. 81, 2496–2498 (2002).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722–6733 (2000).
[CrossRef]

I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4, 432–442 (1999).
[CrossRef]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471–482 (1998).
[CrossRef]

I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, DC voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253–255 (1998).
[CrossRef]

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal film,” IEEE J. Quantum Electron. 32, 525–534 (1996).
[CrossRef]

I. C. Khoo, “Optical-dc-field induced space charge fields and photorefractive-like holographic grating formation in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 53–66 (1996).
[CrossRef]

I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid crystal film,” Opt. Lett. 20, 2137–2139 (1995).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). See also [75].
[CrossRef]

H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystal,” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal,” IEEE J. Quantum Electron. , 29, 1444–1447 (1993).
[CrossRef]

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991).
[CrossRef]

I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987).
[CrossRef]

I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987).
[CrossRef]

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron. 21, 329–335 (1985).
[CrossRef]

I. C. Khoo, “Re-examination of the theory and experimental results of optically induced molecular reorientation and nonlinear diffractions in nematic liquid crystals: spatial frequency and temperature dependence,” Phys. Rev. A 27, 2747–2750 (1983).
[CrossRef]

I. C. Khoo, “Theory of optically induced molecular reorientations and quantitative experiments on wave mixing and the self-focusing of light,” Phys. Rev. A 25, 1636–1644 (1982).
[CrossRef]

I. C. Khoo, “Nonlinear light scattering by laser and dc field induced molecular reorientations in nematic liquid crystal film,” Phys. Rev. A 25, 1040–1048 (1982).
[CrossRef]

I. C. Khoo, “Optically induced molecular reorientation and third order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. A 23, 2077–2081 (1981).
[CrossRef]

I. C. Khoo and Shu-Lu Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freedericks transition,” Appl. Phys. Lett. 37, 3–4 (1980).
[CrossRef]

I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).

Kimball, B. R.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

King, J. S.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Kiraly, B.

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Kiselev, A. D.

See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
[CrossRef]

Kitaeva, V. F.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).

Kivshar, Y. S.

Kosa, T.

Kossyrev, P. A.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Krolikowski, W.

Kroo, N.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).

Kwasny, M.

Larsen, T. T.

Lavrentovich, O. D.

O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. USA 108, 5143–5144 (2011).
[CrossRef]

Li, H.

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). See also [75].
[CrossRef]

H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystal,” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal,” IEEE J. Quantum Electron. , 29, 1444–1447 (1993).
[CrossRef]

Li, J.

J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
[CrossRef]

Liang, X.

Liang, Y.

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722–6733 (2000).
[CrossRef]

H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystal,” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). See also [75].
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal,” IEEE J. Quantum Electron. , 29, 1444–1447 (1993).
[CrossRef]

Lindquist, R. G.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991).
[CrossRef]

Liou, J.

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Liou, J. D.

Litchinitser, N.

Liu, T. H.

Liu, Y. J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Lopresti, P.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991).
[CrossRef]

Lucchetti, L.

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

L. Lucchetti, M. Gentili, and F. Simoni, “Effects leading to colossal optical nonlinearity in dye-doped liquid crystals, IEEE J. Sel. Top. Quantum Electron. 12, 422–430 (2006).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

Ma, Y.

J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
[CrossRef]

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

Macdonald, R.

R. Macdonald, P. Meindl, G. Chilaya, and D. Sikharulidze, “Photo-excitation of space charge fields and reorientation of a nematic liquid crystal of discotic molecules,” Opt. Commun. 150, 195–200 (1998).
[CrossRef]

H. J. Eichler, and R. Macdonald, “Flow alignment and inertial effects in picoseconds laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666–2669 (1991).
[CrossRef]

Maeda, K.

A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
[CrossRef]

Mann, S.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

Mansfield, R. J.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991).
[CrossRef]

Meindl, P.

R. Macdonald, P. Meindl, G. Chilaya, and D. Sikharulidze, “Photo-excitation of space charge fields and reorientation of a nematic liquid crystal of discotic molecules,” Opt. Commun. 150, 195–200 (1998).
[CrossRef]

Merzlikin, S. K.

B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).

Michael, R. R.

Mitus, A. C.

G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011).
[CrossRef]

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
[CrossRef]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photon. 4, 676–685 (2010).
[CrossRef]

Munoz, A.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

Murphy, C. J.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

Nair, G. G.

S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
[CrossRef]

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Neyts, K.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Normandin, R.

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron. 21, 329–335 (1985).
[CrossRef]

Obare, S. O.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

Ono, H.

A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals, Opt. Lett. 22, 1144–1146 (1997).
[CrossRef]

Palffy-Muhoray, P.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

Palomares, L. O.

I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011).
[CrossRef]

Park, J. H.

Pasechnik, S. V.

See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
[CrossRef]

Pawlik, G.

G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011).
[CrossRef]

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
[CrossRef]

Peccianti, M.

See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein.
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Pershan, P. S.

S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
[CrossRef]

Phillips, R. T.

P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603–5612 (1997).
[CrossRef]

Piccardi, A.

See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein.
[CrossRef]

A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
[CrossRef]

Pilipetskii, N. F.

B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).

B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).

Pinkevych, I. P.

V. Y. Reshetnyak, I. P. Pinkevych, G. Cook, D. R. Evans, and T. J. Sluckin, “Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell,” Phys. Rev. E 81, 031705 (2010).
[CrossRef]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Prasad, B. L. V.

S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
[CrossRef]

Prasad, S. K.

S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
[CrossRef]

Priestley, E. B.

S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
[CrossRef]

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010).
[CrossRef]

Qingzhen, H.

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Ramazza, P. L.

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).
[CrossRef]

Reinitzer, F.

F. Reinitzer, “Beitrage zur Kenntniss des Cholesterins,” Wiener Monatschr, Fur Chem. 9, 421–441 (1888).

Rentzepi, P. M.

I. Freund and P. M. Rentzepi, “Second-harmonic generation in liquid crystals,” Phys. Rev. Lett. 18, 393–394 (1967).
[CrossRef]

Reshetnyak, V. Y.

Residori, S.

A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
[CrossRef]

C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005).
[CrossRef]

Rudenko, E. V.

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994).

Russo, G.

C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005).
[CrossRef]

Salamo, G. J.

Santamato, E.

Serak, S. V.

Serinko, R. J.

R. M. Herman and R. J. Serinko, “Nonlinear-optical processes in nematic liquid crystals near Freedericksz transitions,” Phys. Rev. A 19, 1757–1769 (1979).
[CrossRef]

Shalaev, V. M.

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Shen, Y. R.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[CrossRef]

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular-reorientation and laser-heating in a nematic liquid-crystal,” Phys. Rev. A 30, 1453–1460 (1984).
[CrossRef]

E. Santamato, and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser-beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).
[CrossRef]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic liquid crystal film,” Opt. Lett. 6, 411–413 (1981).

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical field induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 1411–1414 (1981).
[CrossRef]

See, for example, G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

Shi, L. P.

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular-reorientation and laser-heating in a nematic liquid-crystal,” Phys. Rev. A 30, 1453–1460 (1984).
[CrossRef]

Shih, M. Y.

Shih, M.-Y.

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471–482 (1998).
[CrossRef]

Shiono, T.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

Shishido, A.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

Shmeliova, D. V.

See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
[CrossRef]

Shtykov, N. M.

M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).

Shvedov, V. G.

Sikharulidze, D.

R. Macdonald, P. Meindl, G. Chilaya, and D. Sikharulidze, “Photo-excitation of space charge fields and reorientation of a nematic liquid crystal of discotic molecules,” Opt. Commun. 150, 195–200 (1998).
[CrossRef]

Simoni, F.

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

L. Lucchetti, M. Gentili, and F. Simoni, “Effects leading to colossal optical nonlinearity in dye-doped liquid crystals, IEEE J. Sel. Top. Quantum Electron. 12, 422–430 (2006).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

Sluckin, T. J.

V. Y. Reshetnyak, I. P. Pinkevych, G. Cook, D. R. Evans, and T. J. Sluckin, “Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell,” Phys. Rev. E 81, 031705 (2010).
[CrossRef]

Slussarenko, S.

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, DC voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253–255 (1998).
[CrossRef]

Smalley, J. S. T.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Smith, D. C.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011).
[CrossRef]

Sobolev, N. N.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).

Sridevi, S.

S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
[CrossRef]

Steeves, D. M.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Stegeman, G. I.

Stinger, M. V.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

Sukhov, A. V.

R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure,” J. Opt. Soc. Am. B 211939–1947 (2004).
[CrossRef]

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994).

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, “Orientational optical nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[CrossRef]

B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).

B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).

Summers, C. J.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18, 9651–9657 (2010) and references therein.
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals, J. Opt. Soc. Am. B 15, 1912–1917 (1998).
[CrossRef]

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, “Orientational optical nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[CrossRef]

B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).

Taheri, B.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

Tamai, N.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

Tanaka, K.

A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
[CrossRef]

Toniolo, C.

C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005).
[CrossRef]

Tresser, C.

C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005).
[CrossRef]

Trotta, M.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

Tsutsumi, O.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

Umeton, C.

N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals, J. Opt. Soc. Am. B 15, 1912–1917 (1998).
[CrossRef]

V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
[CrossRef]

Umeton, C. P.

R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure,” J. Opt. Soc. Am. B 211939–1947 (2004).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Vajda, A.

I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011).
[CrossRef]

Van Stryland, E. W.

Vanbrabant, P. J. M.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010).
[CrossRef]

Veltri, A.

Versace, C.

V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
[CrossRef]

Walasik, W.

G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011).
[CrossRef]

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
[CrossRef]

Warenghem, M.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[CrossRef]

Weiner, B.

Werner, D. H.

White, T. J.

Williams, Y. Z.

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods doped nematic liquid crystal—bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443–450 (2006).
[CrossRef]

Wong, G. K. L.

See, for example, G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

Wood, M. V.

Wood, W. V.

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Xu, J. M.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Yan, P. Y.

Yin, A. J.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Zakhidov, A. A.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Zeldovich, B. Y.

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, “Orientational optical nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[CrossRef]

B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).

Zeldovich, B. Ya.

B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).

Zhang, B.

Zhang, X.

Zhang, Y.

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
[CrossRef]

Zhang-Williams, Y.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Zhao, Y.

B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Zhuang, Shu-Lu

I. C. Khoo and Shu-Lu Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freedericks transition,” Appl. Phys. Lett. 37, 3–4 (1980).
[CrossRef]

Ziolo, R. F.

Zolotko, A. S.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).

Adv. Opt. Photon.

Appl. Phys. Lett.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010).
[CrossRef]

I. C. Khoo and Shu-Lu Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freedericks transition,” Appl. Phys. Lett. 37, 3–4 (1980).
[CrossRef]

I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011).
[CrossRef]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010).
[CrossRef]

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010).
[CrossRef]

I. C. Khoo and J. Ding, “All-optical cw laser polarization conversion at 1.55 micron by two beam coupling in nematic liquid crystal film,” Appl. Phys. Lett. 81, 2496–2498 (2002).
[CrossRef]

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010).
[CrossRef]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011).
[CrossRef]

Discuss. Faraday Soc.

See, for example, F. C. Frank, “On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

IEEE J. Quantum Electron.

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron. 21, 329–335 (1985).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal,” IEEE J. Quantum Electron. , 29, 1444–1447 (1993).
[CrossRef]

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal film,” IEEE J. Quantum Electron. 32, 525–534 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods doped nematic liquid crystal—bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443–450 (2006).
[CrossRef]

L. Lucchetti, M. Gentili, and F. Simoni, “Effects leading to colossal optical nonlinearity in dye-doped liquid crystals, IEEE J. Sel. Top. Quantum Electron. 12, 422–430 (2006).
[CrossRef]

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010).
[CrossRef]

Int. J. Bifurcation Chaos Appl. Sci. Eng.

C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005).
[CrossRef]

J. Am. Chem. Soc.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997).
[CrossRef]

J. Appl. Phys.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991).
[CrossRef]

H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[CrossRef]

J. Chem. Phys.

S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
[CrossRef]

J. Mater. Chem.

N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

J. Opt. Soc. Am.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011).
[CrossRef]

J. Opt. Soc. Am. B

I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987).
[CrossRef]

I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987).
[CrossRef]

N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals, J. Opt. Soc. Am. B 15, 1912–1917 (1998).
[CrossRef]

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
[CrossRef]

R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure,” J. Opt. Soc. Am. B 211939–1947 (2004).
[CrossRef]

I. C. Khoo, J. H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25, 1931–1937 (2008) and references therein.
[CrossRef]

See, for example, N. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into reality,” J. Opt. Soc. Am. B 26, B161–169 (2009) and the references therein.
[CrossRef]

JETP

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994).

JETP Lett.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).

B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).

B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).

Mol. Cryst. Liq. Cryst.

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, “Orientational optical nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[CrossRef]

I. C. Khoo, “Optical-dc-field induced space charge fields and photorefractive-like holographic grating formation in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 53–66 (1996).
[CrossRef]

H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystal,” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994).
[CrossRef]

Molecular Crystals

G. Durand and C.H. Lee, “On the origin of second harmonic generation of light in liquid crystals,” Molecular Crystals 5, 171–183 (1968).
[CrossRef]

Nano Lett.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Nat. Mater.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

Nat. Photon.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photon. 4, 676–685 (2010).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Opt. Commun.

R. Macdonald, P. Meindl, G. Chilaya, and D. Sikharulidze, “Photo-excitation of space charge fields and reorientation of a nematic liquid crystal of discotic molecules,” Opt. Commun. 150, 195–200 (1998).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

Opt. Eng.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Opt. Express

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471–482 (1998).
[CrossRef]

I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4, 432–442 (1999).
[CrossRef]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express 11, 2589–2596 (2003).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18, 9651–9657 (2010) and references therein.
[CrossRef]

See, for example, G. Cook, V. Y. Reshetnyak, R. F. Ziolo, S. A. Basun, P. P. Banerjee, and D. R. Evans, “Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles,” Opt. Express 18, 17339–17345 (2010) and references quoted therein.
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Opt. Lett.

See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein.
[CrossRef]

Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Soliton bending and routing induced by interaction with curved surfaces in nematic liquid crystals,” Opt. Lett. 35, 1692–1694 (2010).
[CrossRef]

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nano-sphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and Terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals, Opt. Lett. 22, 1144–1146 (1997).
[CrossRef]

I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, DC voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253–255 (1998).
[CrossRef]

I. Janossy and T. Kosa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17, 1183–1185 (1992).
[CrossRef]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic liquid crystal film,” Opt. Lett. 6, 411–413 (1981).

E. Santamato, and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser-beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). See also [75].
[CrossRef]

I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid crystal film,” Opt. Lett. 20, 2137–2139 (1995).
[CrossRef]

Opt. Mater.

G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011).
[CrossRef]

Phys. Rep.

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).
[CrossRef]

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

Phys. Rev. A

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

See, for example, G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

R. M. Herman and R. J. Serinko, “Nonlinear-optical processes in nematic liquid crystals near Freedericksz transitions,” Phys. Rev. A 19, 1757–1769 (1979).
[CrossRef]

I. C. Khoo, “Re-examination of the theory and experimental results of optically induced molecular reorientation and nonlinear diffractions in nematic liquid crystals: spatial frequency and temperature dependence,” Phys. Rev. A 27, 2747–2750 (1983).
[CrossRef]

H. L. Ong, “Optically induced Freedericksz transition and bistability in a nematic liquid crystal,” Phys. Rev. A 28, 2393–2407 (1983).
[CrossRef]

I. C. Khoo, “Optically induced molecular reorientation and third order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. A 23, 2077–2081 (1981).
[CrossRef]

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular-reorientation and laser-heating in a nematic liquid-crystal,” Phys. Rev. A 30, 1453–1460 (1984).
[CrossRef]

I. C. Khoo, “Nonlinear light scattering by laser and dc field induced molecular reorientations in nematic liquid crystal film,” Phys. Rev. A 25, 1040–1048 (1982).
[CrossRef]

E. Brasselet, “Spin-orbit optical cross-phase-modulation,” Phys. Rev. A 82, 063836 (2010).
[CrossRef]

I. C. Khoo, “Theory of optically induced molecular reorientations and quantitative experiments on wave mixing and the self-focusing of light,” Phys. Rev. A 25, 1636–1644 (1982).
[CrossRef]

Phys. Rev. B

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
[CrossRef]

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[CrossRef]

Phys. Rev. E

See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein.
[CrossRef]

V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996).
[CrossRef]

L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011).
[CrossRef]

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722–6733 (2000).
[CrossRef]

P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603–5612 (1997).
[CrossRef]

V. Y. Reshetnyak, I. P. Pinkevych, G. Cook, D. R. Evans, and T. J. Sluckin, “Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell,” Phys. Rev. E 81, 031705 (2010).
[CrossRef]

Phys. Rev. Lett.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical field induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 1411–1414 (1981).
[CrossRef]

I. Freund and P. M. Rentzepi, “Second-harmonic generation in liquid crystals,” Phys. Rev. Lett. 18, 393–394 (1967).
[CrossRef]

H. J. Eichler, and R. Macdonald, “Flow alignment and inertial effects in picoseconds laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666–2669 (1991).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

Proc. IEEE

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA

O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. USA 108, 5143–5144 (2011).
[CrossRef]

Sov. Phys. JETP

M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).

Wiener Monatschr, Fur Chem.

F. Reinitzer, “Beitrage zur Kenntniss des Cholesterins,” Wiener Monatschr, Fur Chem. 9, 421–441 (1888).

Other

P. G. deGennes, The Physics of Liquid Crystals (Oxford University Press, 1974).

N. Bloembergen, Nonlinear Optics (Benjamin, 1965).

I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic depiction of the molecular alignment in liquid crystals. (a) Nematic phase, where there is directional order but no position ordering. (b) Smectic phase, where there are both position and directional order. (c) Chiral nematic phase, where the director axis spirals around a fixed axis. (d) Typical birefringence of NLCs in the visible-infrared spectrum.

Fig. 2.
Fig. 2.

A historical snapshot of some remarkable milestones for the nonlinear index coefficients n 2 associated with laser induced crystalline axis reorientation in NLCs for the time period paralleling nonlinear optics evolution. Note a 13 orders of magnitude increase in the n 2 observed since 1979.

Fig. 3.
Fig. 3.

(a) Planar aligned NLC interacting with applied optical and ac/dc fields. Dopants such as the core-shell nanoparticles embedded in the bulk NLC are often used to enhance the electro-optical or nonlinear optical response [2]. (b) Holey fiber [48] with NLC filled cores. (c) Channel NLC waveguide on silicon [49]. (d) Inverse opal photonic crystals [47].

Fig. 4.
Fig. 4.

Schematic depiction of the multitude of scattering processes experienced by an incident optical field into various temporal and spatial frequency components.

Fig. 5.
Fig. 5.

(a) A multilayered model for describing the propagation of a linearly polarized light through a 90° twist alignment NLC placed between two crossed polarizers. (b) Theoretical simulation of the output and input pulses for various laser pulse energies exhibiting shorter switching times with increasing laser energies. Parameters used are Cp = Cv = 2300 J / ( kg * K ) , thermal conductivity λ T = 0.15 W / ( m * K ) , ρ = [ 1.4139 17.7 × 10 4 T + 1.484 × 10 6 T 2 ] × 10 3 kg / m 3 , a = 2 × 10 4 / m , sample thickness 20 μm, laser spot diameter 40 μm, and ambient temperature T = 300 ° K .

Fig. 6.
Fig. 6.

(a) Observed switching dynamics of a laser pulse through a planar aligned dye-doped 5CB NLC. Upper trace: input laser; lower trace: transmitted output pulse, showing diminished transmission after the first 50 ns. Laser wavelength: 750 nm; LC thickness: 200 μm; laser spot size: 140 μm. Input laser energy: 2 μJ. (b) Observed switching dynamics of a laser pulse through a planar aligned pure (undoped) 5CB NLC. Input laser energy: 97 μJ.

Fig. 7.
Fig. 7.

(a) Experimental schematic for observing SOS with an e -wave pump beam on a planar aligned NLC (5CB). Photos show the observed stimulated growth of the scattered noise to intense coherent beamswhile the input pump laser energy is being depleted. (b) Observed back-and-forth flows of optical energies between the e -wave pump beam and the stimulated o -waves. Experimental conditions: cw e -wave input pump power: 150 mW; laser spot diameter on sample: 80 μm; sample thickness: 300 μm. Lower trace: transmitted e -wave power; upper trace: transmitted o -wave power.

Fig. 8.
Fig. 8.

Interaction geometry for photorefractivity and schematic depiction of photo-charge and space charge fields produced by an optical intensity grating on an aligned liquid crystal cell.

Fig. 9.
Fig. 9.

Scanning electron microscopy (SEM) image of the fabricated gold (Au) asymmetric nanodisk array. The exploded view shows the geometry of the three-layer structure and incident optical field orientations.

Fig. 10.
Fig. 10.

Tunable dual “perfect” absorption bands obtained with the Au-asymmetric nanodisk array with a 1  μm thick NLC overlayer. The change in the index of the NLC can be effected by optical means, making the structure a nonlinear optical absorber.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

n 2 η α τ ( n e n o ) Λ 2 / K π 2 .
splay : f 1 = 1 2 K 1 ( · n ^ ) 2 ,
twist : f 2 = 1 2 K 2 ( n ^ · × n ^ ) 2 ,
bend : f 3 = 1 2 K 3 ( n ^ × × n ^ ) 2 ,
F E = Δ ε 2 ( n ^ · E ) 2 .
n e 2 = 1 + ( N 3 ε 0 ) [ α l K l ( 2 S + 1 ) + α t K t ( 2 2 S ) ,
n o 2 = 1 + ( N 3 ε 0 ) [ α l K l ( 1 S ) + α t K t ( 2 + S ) ,
Δ ε op = n e 2 n o 2 = ( N 3 ε 0 ) [ α l K l α t K t ] S = N A ρ ε 0 M ( α l K l α t K t ) ρ S .
I m d 2 ϕ d t 2 + γ 1 d ϕ d t = [ K 1 sin 2 ϕ + K 3 cos 2 ϕ ] d 2 ϕ d z 2 + [ ( K 1 K 3 ) sin ϕ cos ϕ ] ( d ϕ d z ) 2 + [ α 2 sin 2 ϕ α 3 cos 2 ϕ ] d v d z + ε 0 Δ ε E 2 sin ϕ cos ϕ .
2 i k E z + [ 2 E x 2 + 2 E y 2 ] + k o 2 Δ ε ( sin 2 θ sin 2 θ o ) E = 0 ,
Ψ out ( d ) = ( E x E y ) = P ( ϕ Exit ) · m = 1 M [ S 1 ( ϕ m ) · G · S ( ϕ m ) ] · ( cos ϕ Ent sin ϕ Ent ) ,
P ( ϕ ) = ( cos 2 ϕ cos ϕ sin ϕ sin ϕ cos ϕ sin 2 ϕ ) ; S ( ϕ m ) = ( cos ϕ m sin ϕ m sin ϕ m cos ϕ m ) ; G = ( e i γ 2 0 0 e i γ 2 ) .
Δ n m = n e n o n e 2 sin 2 θ m + n o 2 cos 2 θ m n o .
2 t 2 ( Δ ρ ) + v 2 2 ( Δ ρ ) + v 2 β T ρ 0 2 ( Δ T ) + η ρ 0 t 2 ( Δ ρ ) = γ e 8 π 2 ( E 2 ) ,
ρ 0 C v t ( Δ T ) λ T 2 ( Δ T ) ( C p C v ) β T t ( Δ ρ ) = u τ = α n c 4 π E 2 .
f ( S ( z ) ) = a ( T ( z ) T * ) S ( z ) 2 + BS ( z ) 3 + CS ( z ) 4 + L ( d S ( z ) d z ) 2 G 1 S 1 G 2 S 2
( f ( S / z ) ) 1 + f S 1 S 1 = 0 , and ( f ( S / z ) ) 2 + f S 2 S 2 = 0 ,
E ph = E ph ( 0 ) cos ( q ξ ) = [ m k B T 2 e q v σ σ d σ ] cos ( q ξ ) .
E Δ σ = [ ( σ σ ) sin θ cos θ ] [ σ sin 2 θ + σ cos 2 θ ] E z ,
E Δ ε = [ ( ε ε ) sin θ cos θ ] [ ε sin 2 θ + ε cos 2 θ ] E z .
E dc E F [ [ 1 + ( q d / π ) 2 ] ( Δ ε op / Δ ε ) ( E op / E F ) 2 cos ( 2 β ) ( Δ σ σ + Δ ε ε ) · cos β ] 1 2 .
θ 0 = 1 2 Δ ε op Δ ε E op 2 · sin ( 2 β ) + E ph ( 0 ) E dc cos ( β ) [ E Δ E dc cos ( β ) + Δ ε op Δ ε E op 2 cos ( 2 β ) ] E F 2 [ 1 + ( q d π ) 2 ] .

Metrics