Abstract

This review begins with an historical introduction to the field of nonlinear fiber optics and then focuses on the propagation of short optical pulses inside optical fibers. The underlying nonlinear Schrödinger equation is used to discuss the nonlinear phenomenon of self-phase modulation that leads to the formation of solitons in the presence of anomalous dispersion. Recent work on supercontinuum generation is reviewed with emphasis on the important nonlinear processes, such as the fission of higher-order solitons and intrapulse Raman scattering. Applications of fiber-based supercontinuum sources are also discussed in diverse areas ranging from biomedical imaging to frequency metrology. The last part describes applications resulting from nonlinear phenomena, such as cross-phase modulation, stimulated Raman scattering, and four-wave mixing.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [CrossRef]
  3. E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).
    [CrossRef]
  4. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
    [CrossRef]
  5. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
    [CrossRef]
  6. R. L. Carman, R. Y. Chiao, and P. L. Kelly, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283(1966).
    [CrossRef]
  7. N. Bloembergen, Nonlinear Optics (Benjamin, 1965).
  8. F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970).
    [CrossRef]
  9. R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
    [CrossRef]
  10. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
    [CrossRef]
  11. R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
    [CrossRef]
  12. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
    [CrossRef]
  13. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
    [CrossRef]
  14. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  15. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
    [CrossRef]
  16. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
    [CrossRef]
  17. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
    [CrossRef] [PubMed]
  18. R. H. Stolen, “The early years of fiber nonlinear optics,” J. Lightwave Technol. 26, 1021–1031 (2008).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  20. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  21. E. P. Ippen, in Laser Applications to Optics and Spectroscopy, S.F.Jacobs, M.SargentIII, J.F.Scott, and M.O.Scully, eds. (Addison-Wesley, 1975), Vol.  2, Chap. 6.
  22. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [CrossRef]
  23. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
    [CrossRef] [PubMed]
  24. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–488(1986).
    [CrossRef] [PubMed]
  25. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
    [CrossRef]
  26. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [CrossRef]
  27. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394(1988).
    [CrossRef] [PubMed]
  28. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [CrossRef] [PubMed]
  29. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  30. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  31. J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
    [CrossRef]
  32. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [CrossRef]
  33. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  34. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
    [CrossRef]
  35. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [CrossRef]
  36. J.M.Dudley and J.R.Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
    [CrossRef]
  37. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787(2011).
    [CrossRef] [PubMed]
  38. J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8.
    [CrossRef]
  39. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Méelin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped core photonic crystal fibers,” Opt. Lett. 34, 3631–3634 (2009).
    [CrossRef] [PubMed]
  40. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
  41. K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003).
    [CrossRef]
  42. V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
    [CrossRef]
  43. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707–709 (2003).
    [CrossRef] [PubMed]
  44. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Ferman, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
    [CrossRef] [PubMed]
  45. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).
    [CrossRef]
  46. M.N.Islam, ed., Raman Amplifiers for Telecommunications (Springer, 2003), Parts 1 and 2.
  47. C.Headley and G.P.Agrawal, eds. Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).
  48. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).
    [CrossRef]
  49. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
    [CrossRef] [PubMed]
  50. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
    [CrossRef] [PubMed]
  51. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
    [CrossRef] [PubMed]
  52. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
    [CrossRef]

2011

2010

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

2009

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Méelin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped core photonic crystal fibers,” Opt. Lett. 34, 3631–3634 (2009).
[CrossRef] [PubMed]

2008

2006

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

2005

2004

2003

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707–709 (2003).
[CrossRef] [PubMed]

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[CrossRef]

K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003).
[CrossRef]

2002

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
[CrossRef]

2001

2000

1995

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

1989

1988

1987

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

1986

1984

1980

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

1978

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

1975

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[CrossRef]

1974

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[CrossRef]

1973

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

1972

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

1970

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970).
[CrossRef]

1966

R. L. Carman, R. Y. Chiao, and P. L. Kelly, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283(1966).
[CrossRef]

1964

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

1962

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).
[CrossRef]

1961

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

1960

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Agrawal, G. P.

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
[CrossRef] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
[CrossRef] [PubMed]

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[CrossRef]

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akhmediev, N.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Alibart, O.

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[CrossRef]

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

Bartelt, H.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Bekki, N.

Bigot, L.

Bizheva, K.

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (Benjamin, 1965).

Bosman, G. W.

Bouwmans, G.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Carman, R. L.

R. L. Carman, R. Y. Chiao, and P. L. Kelly, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283(1966).
[CrossRef]

Chandalia, J. K.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Chen, H. H.

Chiao, R. Y.

R. L. Carman, R. Y. Chiao, and P. L. Kelly, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283(1966).
[CrossRef]

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Cohen, O.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Deng, Y.

Dias, F.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

Drexler, W.

Dudley, J. M.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Eggleton, B. J.

Fatome, J.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

Ferman, M. E.

Finot, C.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Fulconis, J.

Genty, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Gordon, J. P.

Hartl, I.

Hartung, A.

Hasegawa, A.

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394(1988).
[CrossRef] [PubMed]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

Haus, H. A.

Heidt, A. M.

Hermann, B.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Hoelzenbein, T.

Holzwarth, R.

Hong, F.-L.

Inaba, H.

Ippen, E. P.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

E. P. Ippen, in Laser Applications to Optics and Spectroscopy, S.F.Jacobs, M.SargentIII, J.F.Scott, and M.O.Scully, eds. (Addison-Wesley, 1975), Vol.  2, Chap. 6.

Johnson, E.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
[CrossRef]

Kapron, F. P.

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Keck, D. B.

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970).
[CrossRef]

Kelly, P. L.

R. L. Carman, R. Y. Chiao, and P. L. Kelly, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283(1966).
[CrossRef]

Kibler, B.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Knox, W. H.

Kodama, Y.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

Kosinski, S. G.

Krok, P.

Kudlinski, A.

Le Rouge, A.

Lee, Y. C.

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Lin, Q.

Liu, X.

Lu, F.

Lundeen, J. S.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Marhic, M. E.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).
[CrossRef]

Matsumoto, H.

Maurer, R. D.

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970).
[CrossRef]

Méelin, G.

Mei, M.

Menyuk, C. R.

Millot, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

Minoshima, K.

Mitschke, F. M.

Mollenauer, L. F.

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef] [PubMed]

L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Mori, K.

K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003).
[CrossRef]

Mosley, P. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Mussot, A.

Nagarajan, V.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
[CrossRef]

Ng, W. K.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).
[CrossRef]

Ohara, T.

K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003).
[CrossRef]

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Onae, A.

Parson, W.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
[CrossRef]

Pehamberger, H.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Povazay, B.

Puentes, G.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Quiquempois, Y.

Ranka, J. K.

Rarity, J. G.

Rohwer, E. G.

Russell, P. St. J.

Santhanam, J.

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[CrossRef]

Sato, K.

K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003).
[CrossRef]

Sattmann, H.

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Schellenberg, P.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
[CrossRef]

Schibli, T. R.

Schwoerer, H.

Smith, B. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Stentz, A. J.

Stoicheff, B. P.

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Stolen, R. H.

R. H. Stolen, “The early years of fiber nonlinear optics,” J. Lightwave Technol. 26, 1021–1031 (2008).
[CrossRef]

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[CrossRef]

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Tai, K.

Takara, H.

K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003).
[CrossRef]

Tappert, F.

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Tomlinson, W. J.

Townes, C. H.

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Travers, J. C.

J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8.
[CrossRef]

Tynes, A. R.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

Vanvincq, O.

Wacheck, V.

Wadsworth, W. J.

Wai, P. K. A.

Walmsley, I. A.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Windeler, R.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
[CrossRef]

Windeler, R. S.

Woodbury, E. J.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).
[CrossRef]

Xu, C.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Appl. Phys. Lett.

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970).
[CrossRef]

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Electron. Lett.

K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003).
[CrossRef]

IEEE J. Quantum Electron.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Phys.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[CrossRef]

Nature

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Opt. Commun.

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
[CrossRef] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
[CrossRef] [PubMed]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Méelin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped core photonic crystal fibers,” Opt. Lett. 34, 3631–3634 (2009).
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707–709 (2003).
[CrossRef] [PubMed]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Ferman, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
[CrossRef] [PubMed]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25–27 (2000).
[CrossRef]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
[CrossRef] [PubMed]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–488(1986).
[CrossRef] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394(1988).
[CrossRef] [PubMed]

Phys. Rev. A

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Phys. Rev. Lett.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

R. L. Carman, R. Y. Chiao, and P. L. Kelly, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283(1966).
[CrossRef]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Proc. IRE

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Rev. Sci. Instrum.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002).
[CrossRef]

Other

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).
[CrossRef]

M.N.Islam, ed., Raman Amplifiers for Telecommunications (Springer, 2003), Parts 1 and 2.

C.Headley and G.P.Agrawal, eds. Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).
[CrossRef]

J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8.
[CrossRef]

J.M.Dudley and J.R.Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

E. P. Ippen, in Laser Applications to Optics and Spectroscopy, S.F.Jacobs, M.SargentIII, J.F.Scott, and M.O.Scully, eds. (Addison-Wesley, 1975), Vol.  2, Chap. 6.

N. Bloembergen, Nonlinear Optics (Benjamin, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Measured Raman gain spectrum of silica fibers [22]. (b) Temporal form of the Raman response function deduced from the gain data.

Fig. 2
Fig. 2

SPM-induced spectral broadening of a Gaussian along the length of a fiber for L NL = 1 m . The color scale represents the spectral density on a 40 dB scale (see the color bar).

Fig. 3
Fig. 3

Evolution of second- and fourth-order solitons over two soliton periods. The 40 dB intensity scale is the same as in Fig. 2.

Fig. 4
Fig. 4

(a) Temporal and (b) spectral evolution of a third-order soliton ( N = 3 ) over two dispersion lengths for δ 3 = 0.01 . The intensity scale is logarithmic as in Fig. 2. The diverging red regions in (a) represent dispersive waves at a frequency marked by the red vertical line in part (b).

Fig. 5
Fig. 5

(a) Temporal and (b) spectral evolution of a N = 4 soliton over three dispersion lengths. The intensity scale is logarithmic as in Fig. 2. The tilted blue lines in (a) represent two fundamental solitons traveling slower than the input pulse because of a RIFS of their spectra in part (b).

Fig. 6
Fig. 6

(a) Supercontinuum observed at the output of a 2 - cm -long fluoride fiber pumped at 1450 nm with 180 fs pulses with 50 MW peak power. (b) Simulated evolution for a pulse launched with 0.4 MW peak power. (Reproduced with permission from [35], ©2009 American Institute of Physics.)

Fig. 7
Fig. 7

(a) Optical spectra observed at the output of a 50 - cm -long PCF when it was pumped at a wavelength of 1050 nm with 50 fs pulses of energies ranging from 0.25 to 7.8 nJ . (b) Output spectra when the same PCF was pumped at 790 nm . (Reproduced with permission [37], ©2011 Optical Society of America.)

Fig. 8
Fig. 8

Experimental spectra for a launched power of (a)  70 W in a uniform-core PCF and (b)  45 W in a tapered-core PCF; the inset shows the photograph of output dispersed by a prism. Photographs of (c) the output spot and (d) of the fiber spool are also shown. (Reproduced with permission [39], ©2009 Optical Society of America.)

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

( I 0 L eff ) bulk = ( P 0 π w 0 2 ) π w 0 2 λ = P 0 λ
( I 0 L eff ) fiber = 0 L I 0 e α z d z = P 0 π w 0 2 α ( 1 e α L ) .
( I 0 L eff ) fiber ( I 0 L eff ) bulk = λ π w 0 2 α ,
E ( r , t ) = 1 2 π x ^ F ( x , y , ω ) a ¯ ( 0 , ω ) e i [ β ( ω ) z ω t ] d ω ,
β ( ω ) = β 0 + ( ω ω 0 ) β 1 + 1 2 ( ω ω 0 ) 2 β 2 + ,
E ( r , t ) = x ^ F ( x , y , ω 0 ) A ( z , t ) e i ( β 0 z ω 0 t ) .
A z + α 2 A = i m = 1 i m β m m ! m A t m + i γ ( 1 + i ω 0 t ) × ( A ( z , t ) 0 R ( t ) | A ( z , t t ) | 2 d t ) ,
γ = ω 0 n 2 ( ω 0 ) c A eff , A eff = [ | F ( x , y , ω 0 ) | 2 d x d y ] 2 | F ( x , y , ω 0 ) | 4 d x d y .
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) .
A z + α 2 A + β 1 A t + i β 2 2 2 A t 2 = i γ | A | 2 A .
i A z + i α 2 A β 2 2 2 A T 2 + γ | A | 2 A = 0.
U = A P 0 , ξ = z L D , τ = T T 0 ,
i U ξ δ 2 2 2 U τ 2 + N 2 | U | 2 U = 0 ,
N 2 = L D L NL = γ P 0 T 0 2 | β 2 | .
P z = α 2 P , ϕ z = γ P .
P ( z , T ) = P ( 0 , T ) e α z , ϕ ( L , T ) = ϕ ( 0 , T ) + γ P ( 0 , T ) L eff ,
ϕ NL ( L , T ) = f P ( T ) ( L eff / L NL ) .
δ ω ( T ) = ϕ NL T = ( L eff L NL ) f p T .
U ( ξ , τ ) = η sech ( η τ ) exp ( i η 2 ξ / 2 ) ,
h a ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t / τ 2 ) sin ( t / τ 1 ) ,
h R ( t ) = ( 1 f b ) h a ( t ) + f b h b ( t ) ,
h b ( t ) = ( 2 τ b t ) τ b 2 exp ( τ / τ b ) ,
i U ξ δ 2 2 2 U τ 2 + N 2 | U | 2 U = i δ 3 3 U τ 3 + i N 2 ( 1 + i s t ) × ( U ( ξ , τ ) 0 R ( τ ) | U ( ξ , τ τ ) | 2 d τ ) ,
T k = T 0 2 N + 1 2 k , P k = ( 2 N + 1 2 k ) 2 N 2 P 0 ,

Metrics