Abstract

Anodic alumina photonic crystal heterostructures (PCHs) consisting of two photonic crystals with different lattice constants are fabricated under the combination of two periodic oxidation voltage waves with similar voltage waveforms but different upper and lower bound values. The optical properties of these PCHs are studied. The anodic alumina PCHs with controllable photonic bandgaps (PBGs) offer an ability to tailor the PBGs. Three different combinations of band structures—overlapped, staggered, and split PBGs—are introduced. These may provide a broad range of possibilities for optical device development.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. A. Sharkawy, S. Shi, and D. W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002).
    [CrossRef] [PubMed]
  4. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537–1537(2003).
    [CrossRef] [PubMed]
  5. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
    [CrossRef]
  6. N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
    [CrossRef]
  7. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
    [CrossRef]
  8. W. F. Zhang, J. H. Liu, W. P. Huang, and W. Zhao, “Polarization bandpass filter based on one-dimensional photonic crystal heterostructures,” J. Opt. Soc. Am. B 26, 1845–1851 (2009).
    [CrossRef]
  9. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
    [CrossRef]
  10. Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
    [CrossRef]
  11. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
    [CrossRef]
  12. I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J. G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13, 1574–1577 (2001).
    [CrossRef]
  13. B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
    [CrossRef]
  14. D. Losic and M. Lillo, “Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization,” Small 5, 1392–1397 (2009).
    [CrossRef] [PubMed]
  15. M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystal for amplified optical detection of protease activity,” Adv. Mater. 18, 1393–1396 (2006).
    [CrossRef]
  16. G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
    [CrossRef]
  17. J. Li, C. Papadopoulos, and J. Xu, “Nanoelectronics—Growing Y-junction carbon nanotubes,” Nature 402, 253–254(1999).
    [CrossRef]
  18. G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
    [CrossRef] [PubMed]
  19. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
    [CrossRef]
  20. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
    [CrossRef]

2009 (3)

Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
[CrossRef]

D. Losic and M. Lillo, “Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization,” Small 5, 1392–1397 (2009).
[CrossRef] [PubMed]

W. F. Zhang, J. H. Liu, W. P. Huang, and W. Zhao, “Polarization bandpass filter based on one-dimensional photonic crystal heterostructures,” J. Opt. Soc. Am. B 26, 1845–1851 (2009).
[CrossRef]

2007 (1)

B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
[CrossRef]

2006 (2)

M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystal for amplified optical detection of protease activity,” Adv. Mater. 18, 1393–1396 (2006).
[CrossRef]

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

2005 (1)

G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
[CrossRef] [PubMed]

2004 (2)

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

2003 (1)

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537–1537(2003).
[CrossRef] [PubMed]

2002 (3)

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

A. Sharkawy, S. Shi, and D. W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002).
[CrossRef] [PubMed]

2001 (1)

I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J. G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13, 1574–1577 (2001).
[CrossRef]

1999 (3)

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

J. Li, C. Papadopoulos, and J. Xu, “Nanoelectronics—Growing Y-junction carbon nanotubes,” Nature 402, 253–254(1999).
[CrossRef]

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

1978 (1)

G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
[CrossRef]

Ajayan, P. M.

G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Asano, T.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537–1537(2003).
[CrossRef] [PubMed]

Asoh, H.

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

Canham, L. T.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Cao, A. Y.

G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
[CrossRef] [PubMed]

Dai, Q. F.

Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
[CrossRef]

Dumas, J. G.

I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J. G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13, 1574–1577 (2001).
[CrossRef]

Eychmuller, A.

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

Fei, G. T.

B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
[CrossRef]

Feng, T. H.

Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
[CrossRef]

Furneaux, R. C.

G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
[CrossRef]

Gaponik, N.

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

Goode, J. S.

G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
[CrossRef]

Hu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Huang, W. P.

Ishino, N.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Istrate, E.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

Jia, W.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Jung, Y. J.

G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
[CrossRef] [PubMed]

Juodkazis, S.

I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J. G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13, 1574–1577 (2001).
[CrossRef]

Kawakami, S.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Kong, M. G.

B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
[CrossRef]

Lan, S.

Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
[CrossRef]

Li, J.

J. Li, C. Papadopoulos, and J. Xu, “Nanoelectronics—Growing Y-junction carbon nanotubes,” Nature 402, 253–254(1999).
[CrossRef]

Li, Y.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Lillo, M.

D. Losic and M. Lillo, “Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization,” Small 5, 1392–1397 (2009).
[CrossRef] [PubMed]

Liu, J. H.

Liu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Liu, Z. Q.

Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
[CrossRef]

Losic, D.

D. Losic and M. Lillo, “Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization,” Small 5, 1392–1397 (2009).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

Meng, G. W.

G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
[CrossRef] [PubMed]

Mikulskas, I.

I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J. G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13, 1574–1577 (2001).
[CrossRef]

Miskelly, G. M.

M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystal for amplified optical detection of protease activity,” Adv. Mater. 18, 1393–1396 (2006).
[CrossRef]

Miura, K.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Nakao, M.

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

Noda, S.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537–1537(2003).
[CrossRef] [PubMed]

Nohtomi, M.

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

Ohtera, Y.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Ohya, M.

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

Orosco, M. M.

M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystal for amplified optical detection of protease activity,” Adv. Mater. 18, 1393–1396 (2006).
[CrossRef]

Pacholski, C.

M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystal for amplified optical detection of protease activity,” Adv. Mater. 18, 1393–1396 (2006).
[CrossRef]

Papadopoulos, C.

J. Li, C. Papadopoulos, and J. Xu, “Nanoelectronics—Growing Y-junction carbon nanotubes,” Nature 402, 253–254(1999).
[CrossRef]

Prather, D. W.

Richardson, J. A.

G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
[CrossRef]

Rogach, A. L.

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

Romanov, S. G.

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

Russell, P. St. J.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Sailor, M. J.

M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystal for amplified optical detection of protease activity,” Adv. Mater. 18, 1393–1396 (2006).
[CrossRef]

Sargent, E. H.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

Sato, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Sharkawy, A.

Shi, S.

Snow, P. A.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Solovyev, V. G.

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

Song, B. S.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537–1537(2003).
[CrossRef] [PubMed]

Squire, E. K.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Tamamura, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

Tanaka, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Thompson, G. E.

G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
[CrossRef]

Tomasiunas, R.

I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J. G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13, 1574–1577 (2001).
[CrossRef]

Torres, C. M. S.

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

Vajtai, R.

G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
[CrossRef] [PubMed]

Wang, B.

B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
[CrossRef]

Wang, M.

B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
[CrossRef]

Wang, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Wood, G. C.

G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
[CrossRef]

Wu, L. J.

Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
[CrossRef]

Xu, C.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Xu, J.

J. Li, C. Papadopoulos, and J. Xu, “Nanoelectronics—Growing Y-junction carbon nanotubes,” Nature 402, 253–254(1999).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Zhang, L. D.

B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
[CrossRef]

Zhang, W. F.

Zhao, W.

Zi, J.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Adv. Mater. (2)

I. Mikulskas, S. Juodkazis, R. Tomasiunas, and J. G. Dumas, “Aluminum oxide photonic crystals grown by a new hybrid method,” Adv. Mater. 13, 1574–1577 (2001).
[CrossRef]

M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystal for amplified optical detection of protease activity,” Adv. Mater. 18, 1393–1396 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Chin. Phys. B (1)

Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009).
[CrossRef]

J. Appl. Phys. (2)

N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, C. M. S. Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035(2004).
[CrossRef]

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys. 38, L1403–L1405 (1999).
[CrossRef]

Nanotechnology (1)

B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of photonic crystals made of air pores in anodic alumina,” Nanotechnology 18, 365601 (2007).
[CrossRef]

Nature (2)

G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium,” Nature 272, 433–435 (1978).
[CrossRef]

J. Li, C. Papadopoulos, and J. Xu, “Nanoelectronics—Growing Y-junction carbon nanotubes,” Nature 402, 253–254(1999).
[CrossRef]

Opt. Quantum Electron. (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, “Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires,” Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

Science (1)

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537–1537(2003).
[CrossRef] [PubMed]

Small (1)

D. Losic and M. Lillo, “Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization,” Small 5, 1392–1397 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the synthesis process for the anodic alumina PCHs. (a) Curves of periodic oxidation voltage versus time. (b) Scheme of the anodic alumina PCHs. The interface between PC 1 and PC 2 is marked with a black dashed line.

Fig. 2
Fig. 2

Cross-section SEM image of the anodic alumina PCH with P = 1.1 . The interface between PC 1 and PC 2 is marked with a white dashed line.

Fig. 3
Fig. 3

Transmission spectra of the anodic alumina PCHs with P as (a) 1, (b) 1.05, (c) 1.1, and (d) 1.2. Inset: the corresponding band structures of the PCHs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m λ m = 2 ( d 1 n 1 + d 2 n 2 ) ,

Metrics