Abstract

In this paper, we first demonstrate how to realize quantum state transferring (QST) from one atom to another based on quantum Zeno dynamics. Then, the QST protocol is generalized to realize the quantum state swapping (QSS) between two arbitrary atoms with the help of a third one. Furthermore, we also consider the QSS within a quantum network. The influence of decoherence is analyzed by numerical calculation. The results demonstrate that the protocols are robust against cavity decay.

© 2011 Optical Society of America

Full Article  |  PDF Article

Corrections

Zhi-Cheng Shi, Yan Xia, Jie Song, and He-Shan Song, "Atomic quantum state transferring and swapping via quantum Zeno dynamics: erratum," J. Opt. Soc. Am. B 29, 1612-1612 (2012)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-29-7-1612

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030(2008).
    [CrossRef] [PubMed]
  3. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
    [CrossRef] [PubMed]
  4. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711(2002).
    [CrossRef] [PubMed]
  5. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
    [CrossRef] [PubMed]
  6. J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).
    [CrossRef]
  7. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
    [CrossRef] [PubMed]
  8. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
    [CrossRef] [PubMed]
  9. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
    [CrossRef] [PubMed]
  10. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
    [CrossRef]
  11. A. Kuzmich and E. S. Polzik, “Atomic quantum state teleportation and swapping,” Phys. Rev. Lett. 85, 5639–5642 (2000).
    [CrossRef]
  12. A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks, and memory,” Phys. Rev. A 70, 022323(2004).
    [CrossRef]
  13. J. F. Zhang, X. H. Peng, and D. Suter, “Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance,” Phys. Rev. A 73, 062325 (2006).
    [CrossRef]
  14. H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007).
    [CrossRef]
  15. A. Bayat and V. Karimipour, “Transfer of d-level quantum states through spin chains by random swapping,” Phys. Rev. A 75, 022321 (2007).
    [CrossRef]
  16. C. D. Franco, M. Paternostro, and M. S. Kim, “Quantum state transfer via temporal kicking of information,” Phys. Rev. A 81, 022319 (2010).
    [CrossRef]
  17. B. Chen, W. Fan, and Y. Xu, “Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system,” Phys. Rev. A 83, 014301 (2011).
    [CrossRef]
  18. P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009).
    [CrossRef]
  19. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997).
    [CrossRef]
  20. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
    [CrossRef] [PubMed]
  21. S. Bose, “Quantum communication through an unmodulated spin chain,” Phys. Rev. Lett. 91, 207901 (2003).
    [CrossRef] [PubMed]
  22. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  23. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [CrossRef]
  24. D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
    [CrossRef]
  25. M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998).
    [CrossRef]
  26. C. P. Yang, “Quantum information transfer with superconducting flux qubits coupled to a resonator,” Phys. Rev. A 82, 054303(2010).
    [CrossRef]
  27. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
    [CrossRef]
  28. P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001).
    [CrossRef]
  29. P. Facchi and S. Pascazio, “Quantum Zeno and inverse quantum Zeno effects,” Prog. Opt. 42, 147–217 (2001).
    [CrossRef]
  30. B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Physics 18, 756–763 (1977).
    [CrossRef]
  31. P. Jiannis and W. Herbert, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
    [CrossRef]
  32. K. P. Jiannis and B. Almut, “Decoherence-free dynamical and geometrical entangling phase gates,” Phys. Rev. A 69, 033817(2004).
    [CrossRef]
  33. X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
    [CrossRef]
  34. S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
    [CrossRef]
  35. X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339(2008).
    [CrossRef]
  36. X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
    [CrossRef]
  37. X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
    [CrossRef]
  38. A. L. Wen, “Distributed qutrit-qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
    [CrossRef]
  39. A. L. Wen and Y. H. Guang, “Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics,” Phys. Rev. A 83, 022322 (2011).
    [CrossRef]
  40. P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys Conf. Ser. 196, 012017(2009).
    [CrossRef]
  41. P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
    [CrossRef] [PubMed]
  42. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
    [CrossRef]
  43. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [CrossRef] [PubMed]
  44. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
    [CrossRef]
  45. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
    [CrossRef]
  46. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
    [CrossRef]
  47. F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
    [CrossRef]

2011 (4)

B. Chen, W. Fan, and Y. Xu, “Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system,” Phys. Rev. A 83, 014301 (2011).
[CrossRef]

S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
[CrossRef]

A. L. Wen, “Distributed qutrit-qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
[CrossRef]

A. L. Wen and Y. H. Guang, “Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics,” Phys. Rev. A 83, 022322 (2011).
[CrossRef]

2010 (4)

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

C. D. Franco, M. Paternostro, and M. S. Kim, “Quantum state transfer via temporal kicking of information,” Phys. Rev. A 81, 022319 (2010).
[CrossRef]

C. P. Yang, “Quantum information transfer with superconducting flux qubits coupled to a resonator,” Phys. Rev. A 82, 054303(2010).
[CrossRef]

2009 (3)

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009).
[CrossRef]

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys Conf. Ser. 196, 012017(2009).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
[CrossRef]

2008 (4)

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030(2008).
[CrossRef] [PubMed]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef] [PubMed]

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339(2008).
[CrossRef]

2007 (4)

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef] [PubMed]

H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007).
[CrossRef]

A. Bayat and V. Karimipour, “Transfer of d-level quantum states through spin chains by random swapping,” Phys. Rev. A 75, 022321 (2007).
[CrossRef]

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

2006 (2)

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

J. F. Zhang, X. H. Peng, and D. Suter, “Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance,” Phys. Rev. A 73, 062325 (2006).
[CrossRef]

2005 (1)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

2004 (3)

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks, and memory,” Phys. Rev. A 70, 022323(2004).
[CrossRef]

K. P. Jiannis and B. Almut, “Decoherence-free dynamical and geometrical entangling phase gates,” Phys. Rev. A 69, 033817(2004).
[CrossRef]

2003 (4)

S. Bose, “Quantum communication through an unmodulated spin chain,” Phys. Rev. Lett. 91, 207901 (2003).
[CrossRef] [PubMed]

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).
[CrossRef]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

2002 (3)

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711(2002).
[CrossRef] [PubMed]

P. Jiannis and W. Herbert, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef]

2001 (4)

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno and inverse quantum Zeno effects,” Prog. Opt. 42, 147–217 (2001).
[CrossRef]

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

2000 (3)

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef] [PubMed]

A. Kuzmich and E. S. Polzik, “Atomic quantum state teleportation and swapping,” Phys. Rev. Lett. 85, 5639–5642 (2000).
[CrossRef]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[CrossRef]

1998 (2)

D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998).
[CrossRef]

1997 (3)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997).
[CrossRef]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1977 (1)

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Physics 18, 756–763 (1977).
[CrossRef]

Agarwal, G. S.

A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks, and memory,” Phys. Rev. A 70, 022323(2004).
[CrossRef]

Almut, B.

K. P. Jiannis and B. Almut, “Decoherence-free dynamical and geometrical entangling phase gates,” Phys. Rev. A 69, 033817(2004).
[CrossRef]

Bayat, A.

A. Bayat and V. Karimipour, “Transfer of d-level quantum states through spin chains by random swapping,” Phys. Rev. A 75, 022321 (2007).
[CrossRef]

Bayer, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Biswas, A.

A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks, and memory,” Phys. Rev. A 70, 022323(2004).
[CrossRef]

Boca, A.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef] [PubMed]

Boozer, A. D.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef] [PubMed]

Boschi, D.

D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

S. Bose, “Quantum communication through an unmodulated spin chain,” Phys. Rev. Lett. 91, 207901 (2003).
[CrossRef] [PubMed]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Branca1, S.

D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

Buller, G. S.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Carmichael, H. J.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Chen, B.

B. Chen, W. Fan, and Y. Xu, “Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system,” Phys. Rev. A 83, 014301 (2011).
[CrossRef]

Chen, L.

S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
[CrossRef]

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997).
[CrossRef]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Deng, Z. J.

H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007).
[CrossRef]

Dimer, F.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Estienne, B.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Facchi, P.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys Conf. Ser. 196, 012017(2009).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno and inverse quantum Zeno effects,” Prog. Opt. 42, 147–217 (2001).
[CrossRef]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[CrossRef]

Fafard, S.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Fan, W.

B. Chen, W. Fan, and Y. Xu, “Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system,” Phys. Rev. A 83, 014301 (2011).
[CrossRef]

Feng, M.

H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007).
[CrossRef]

Fernandez, V.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Forchel, A.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Franco, C. D.

C. D. Franco, M. Paternostro, and M. S. Kim, “Quantum state transfer via temporal kicking of information,” Phys. Rev. A 81, 022319 (2010).
[CrossRef]

Gasparoni, S.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Gong, Q. H.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009).
[CrossRef]

Gordon, K. J.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Gorini, V.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[CrossRef]

Gu, Y.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009).
[CrossRef]

Guang, Y. H.

A. L. Wen and Y. H. Guang, “Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics,” Phys. Rev. A 83, 022322 (2011).
[CrossRef]

Guo, G. C.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009).
[CrossRef]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef] [PubMed]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef] [PubMed]

Guo, G. P.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef] [PubMed]

Hardy, L.

D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Hawrylak, P.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Herbert, W.

P. Jiannis and W. Herbert, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef]

Hinzer, K.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Jiannis, K. P.

K. P. Jiannis and B. Almut, “Decoherence-free dynamical and geometrical entangling phase gates,” Phys. Rev. A 69, 033817(2004).
[CrossRef]

Jiannis, P.

P. Jiannis and W. Herbert, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Karimipour, V.

A. Bayat and V. Karimipour, “Transfer of d-level quantum states through spin chains by random swapping,” Phys. Rev. A 75, 022321 (2007).
[CrossRef]

Kielpinski, D.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711(2002).
[CrossRef] [PubMed]

Kim, M. S.

C. D. Franco, M. Paternostro, and M. S. Kim, “Quantum state transfer via temporal kicking of information,” Phys. Rev. A 81, 022319 (2010).
[CrossRef]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030(2008).
[CrossRef] [PubMed]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998).
[CrossRef]

Korkusinski, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Kuzmich, A.

A. Kuzmich and E. S. Polzik, “Atomic quantum state teleportation and swapping,” Phys. Rev. Lett. 85, 5639–5642 (2000).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998).
[CrossRef]

Li, P. B.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009).
[CrossRef]

Lin, Z. R.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef] [PubMed]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997).
[CrossRef]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

Marmo, G.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys Conf. Ser. 196, 012017(2009).
[CrossRef]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[CrossRef]

Martini, F. D.

D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

Miller, R.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef] [PubMed]

Misra, B.

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Physics 18, 756–763 (1977).
[CrossRef]

Monroe, C.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711(2002).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998).
[CrossRef]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Nori, F.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339(2008).
[CrossRef]

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).
[CrossRef]

Northup, T. E.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef] [PubMed]

Pan, J. W.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Parkins, A. S.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Pascazio, S.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys Conf. Ser. 196, 012017(2009).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

P. Facchi and S. Pascazio, “Quantum Zeno and inverse quantum Zeno effects,” Prog. Opt. 42, 147–217 (2001).
[CrossRef]

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001).
[CrossRef]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[CrossRef]

Paternostro, M.

C. D. Franco, M. Paternostro, and M. S. Kim, “Quantum state transfer via temporal kicking of information,” Phys. Rev. A 81, 022319 (2010).
[CrossRef]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
[CrossRef]

Peng, X. H.

J. F. Zhang, X. H. Peng, and D. Suter, “Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance,” Phys. Rev. A 73, 062325 (2006).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Polzik, E. S.

A. Kuzmich and E. S. Polzik, “Atomic quantum state teleportation and swapping,” Phys. Rev. Lett. 85, 5639–5642 (2000).
[CrossRef]

Popescu, S.

D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Scardicchio, A.

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001).
[CrossRef]

Schulman, L. S.

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001).
[CrossRef]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

Shao, X. Q.

S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
[CrossRef]

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
[CrossRef]

Song, H. S.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Song, J.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Stern, O.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Sudarshan, E. C. G.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[CrossRef]

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Physics 18, 756–763 (1977).
[CrossRef]

Suter, D.

J. F. Zhang, X. H. Peng, and D. Suter, “Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance,” Phys. Rev. A 73, 062325 (2006).
[CrossRef]

Townsend, P. D.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Tu, T.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef] [PubMed]

Ursin, R.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Wang, H. F.

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
[CrossRef]

Wang, X. B.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339(2008).
[CrossRef]

Wasilewski, Z. R.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Wei, H.

H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007).
[CrossRef]

Weihs, G.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Wen, A. L.

A. L. Wen, “Distributed qutrit-qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
[CrossRef]

A. L. Wen and Y. H. Guang, “Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics,” Phys. Rev. A 83, 022322 (2011).
[CrossRef]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Wineland, D. J.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711(2002).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Xia, Y.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Xu, Y.

B. Chen, W. Fan, and Y. Xu, “Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system,” Phys. Rev. A 83, 014301 (2011).
[CrossRef]

Yang, C. P.

C. P. Yang, “Quantum information transfer with superconducting flux qubits coupled to a resonator,” Phys. Rev. A 82, 054303(2010).
[CrossRef]

Yeon, K. H.

S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
[CrossRef]

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
[CrossRef]

You, J. Q.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339(2008).
[CrossRef]

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).
[CrossRef]

Zeilinger, A.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Zhang, J. F.

J. F. Zhang, X. H. Peng, and D. Suter, “Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance,” Phys. Rev. A 73, 062325 (2006).
[CrossRef]

Zhang, S.

S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
[CrossRef]

Zhang, X. L.

H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007).
[CrossRef]

Zhao, Y. F.

S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
[CrossRef]

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

Zheng, S. B.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef] [PubMed]

Zhu, F. Y.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Europhys. Lett. (1)

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

J. Math. Physics (1)

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Physics 18, 756–763 (1977).
[CrossRef]

J. Phys Conf. Ser. (1)

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys Conf. Ser. 196, 012017(2009).
[CrossRef]

J. Phys. B (1)

S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011).
[CrossRef]

Nature (6)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998).
[CrossRef]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030(2008).
[CrossRef] [PubMed]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711(2002).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010).
[CrossRef]

Opt. Commun. (1)

A. L. Wen, “Distributed qutrit-qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
[CrossRef]

Phys. Lett. A (2)

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[CrossRef]

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009).
[CrossRef]

Phys. Rev. A (15)

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339(2008).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001).
[CrossRef]

C. P. Yang, “Quantum information transfer with superconducting flux qubits coupled to a resonator,” Phys. Rev. A 82, 054303(2010).
[CrossRef]

A. L. Wen and Y. H. Guang, “Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics,” Phys. Rev. A 83, 022322 (2011).
[CrossRef]

K. P. Jiannis and B. Almut, “Decoherence-free dynamical and geometrical entangling phase gates,” Phys. Rev. A 69, 033817(2004).
[CrossRef]

A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks, and memory,” Phys. Rev. A 70, 022323(2004).
[CrossRef]

J. F. Zhang, X. H. Peng, and D. Suter, “Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance,” Phys. Rev. A 73, 062325 (2006).
[CrossRef]

H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007).
[CrossRef]

A. Bayat and V. Karimipour, “Transfer of d-level quantum states through spin chains by random swapping,” Phys. Rev. A 75, 022321 (2007).
[CrossRef]

C. D. Franco, M. Paternostro, and M. S. Kim, “Quantum state transfer via temporal kicking of information,” Phys. Rev. A 81, 022319 (2010).
[CrossRef]

B. Chen, W. Fan, and Y. Xu, “Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system,” Phys. Rev. A 83, 014301 (2011).
[CrossRef]

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009).
[CrossRef]

Phys. Rev. B (1)

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).
[CrossRef]

Phys. Rev. Lett. (12)

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef] [PubMed]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef] [PubMed]

S. Bose, “Quantum communication through an unmodulated spin chain,” Phys. Rev. Lett. 91, 207901 (2003).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

P. Jiannis and W. Herbert, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef]

D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

A. Kuzmich and E. S. Polzik, “Atomic quantum state teleportation and swapping,” Phys. Rev. Lett. 85, 5639–5642 (2000).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

Prog. Opt. (1)

P. Facchi and S. Pascazio, “Quantum Zeno and inverse quantum Zeno effects,” Prog. Opt. 42, 147–217 (2001).
[CrossRef]

Science (1)

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for realizing the QST from atom 2 to atom 1. Those atoms have the identical Λ-type three-level configuration.

Fig. 2
Fig. 2

Experimental setup for realizing QSS between atom 2 and atom 3 while atom 1 is an auxiliary atom. The cavities are connected by optical fibers. The optical switches 1, 2, and 3 can control two cavities whether they have interaction or not.

Fig. 3
Fig. 3

Experimental setup for realizing QSS for two arbitrary atoms among N atoms in the quantum network.

Fig. 4
Fig. 4

Fidelity F of QST as a function of the ratios λ / g and Ω / g .

Fig. 5
Fig. 5

Fidelity F of QST as a function of cavity decay κ / g and atomic spontaneous emission Γ / g in the case of Ω 1 = 0.1 g and κ f / λ = 0 .

Fig. 6
Fig. 6

Fidelity F of QST as a function of cavity decay κ / g and optical fiber decay κ f / λ in the case of Ω 1 = 0.1 g , Γ / g = 0 , and g = λ .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H tot = H l + H c + H cf , H l = k = 1 2 Ω k ( | e k 1 | + | 1 k e | ) , H c = k = 1 2 g k ( a k | e k 0 | + a k | 0 k e | ) , H cf = λ b ( a 1 + a 2 ) + H . c . ,
| ϕ 1 = | 0 1 | 1 2 | 0 c 2 | 0 f | 0 c 1 , | ϕ 2 = | 0 1 | e 2 | 0 c 2 | 0 f | 0 c 1 , | ϕ 3 = | 0 1 | 0 2 | 1 c 2 | 0 f | 0 c 1 , | ϕ 4 = | 0 1 | 0 2 | 0 c 2 | 1 f | 0 c 1 , | ϕ 5 = | 0 1 | 0 2 | 0 c 2 | 0 f | 1 c 1 , | ϕ 6 = | e 1 | 0 2 | 0 c 2 | 0 f | 0 c 1 , | ϕ 7 = | 1 1 | 0 2 | 0 c 2 | 0 f | 0 c 1 .
H P 1 = { | ϕ 1 , | ϕ 7 , | φ 1 } , H P 2 = { | φ 2 } , H P 3 = { | φ 3 } , H P 4 = { | φ 4 } , H P 5 = { | φ 5 } ,
| φ 1 = 1 2 λ 2 + g 2 ( λ | ϕ 2 g | ϕ 4 + λ | ϕ 6 ) , | φ 2 = 1 2 ( | ϕ 2 + | ϕ 3 | ϕ 5 + | ϕ 6 ) , | φ 3 = 1 2 ( | ϕ 2 | ϕ 3 + | ϕ 5 + | ϕ 6 ) , | φ 4 = 1 2 2 λ 2 + g 2 ( g | ϕ 2 2 λ 2 + g 2 | ϕ 3 + 2 λ | ϕ 4 2 λ 2 + g 2 | ϕ 5 + g | ϕ 6 ) , | φ 5 = 1 2 2 λ 2 + g 2 ( g | ϕ 2 + 2 λ 2 + g 2 | ϕ 3 + 2 λ | ϕ 4 + 2 λ 2 + g 2 | ϕ 5 + g | ϕ 6 ) ,
P n = j | β n , j β n , j | , ( | β n , j H P n ) .
H total n ( η n P n + P n H laser P n ) = g | φ 2 φ 2 | + g | φ 3 φ 3 | 2 λ 2 + g 2 | φ 4 φ 4 | + 2 λ 2 + g 2 | φ 5 φ 5 | + λ 2 λ 2 + g 2 ( Ω 1 | ϕ 1 φ 1 | + Ω 2 | ϕ 7 φ 1 | ) + H . c .
H eff = λ 2 λ 2 + g 2 ( Ω 1 | ϕ 1 φ 1 | + Ω 2 | ϕ 7 φ 1 | ) + H . c .
| Φ ( t ) = a | 0 1 | 0 2 | 0 c 2 | 0 f | 0 c 1 + b [ 1 2 ( 1 + cos 2 λ Ω t 2 λ 2 + g 2 ) | ϕ 1 + 1 2 ( 1 cos 2 λ Ω t 2 λ 2 + g 2 ) | ϕ 7 i 2 2 sin 2 λ Ω t 2 λ 2 + g 2 | φ 1 ] .
| Φ ( 2 λ 2 + g 2 π 2 λ Ω ) = a | 0 1 | 0 2 | 0 c 2 | 0 f | 0 c 1 + b | ϕ 7 = a | 0 1 | 0 2 | 0 c 2 | 0 f | 0 c 1 + b | 1 1 | 0 2 | 0 c 2 | 0 f | 0 c 1 = ( a | 0 + b | 1 ) 1 | 0 2 | 0 c 2 | 0 f | 0 c 1 ,
ρ ˙ = i [ H tot , ρ ] j = 1 2 κ j 2 ( a j a j ρ 2 a j ρ a j + ρ a j a j ) κ f 2 ( b b ρ 2 b ρ b + ρ b b ) k = 1 2 m = 0 1 Γ e m k 2 ( σ e m k σ m e k ρ 2 σ m e k ρ σ e m k + ρ σ e m k σ m e k ) ,

Metrics