Abstract

We study the propagation and momentum transport of the inhomogeneous component of second and third harmonic pulses in dielectrics and semiconductors, at visible and UV wavelengths, focusing on materials like GaP. In these spectral regions GaP is characterized by large absorption, metallic behavior or a combination of both. We show that phase locking causes the generated inhomogeneous signals to propagate through a bulk metallic medium without being absorbed. This means that it occurs even in centrosymmetric materials thanks to the magnetic Lorentz force. We show that the transport of energy and momentum is quite peculiar and it can appear as anomalous, and that the direction of the Poynting vector of some of the harmonic pulses does not follow Snell’s law after crossing the interface. These results make it clear that there are new opportunities in ultrafast nonlinear optics and nanoplasmonics in new wavelength ranges.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: MOV (217 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription