Abstract

Phenanthrenequinone (PQ) doped poly(methyl methacrylate) (PMMA) photopolymer material is receiving ever greater attention in the literature due to its attractive properties for applications such as holographic data storage, hybrid optoelectronics, solar concentrators, self-trapping of light, and diffractive optical elements. PQ/PMMA photopolymer material can be used to produce three-dimensional low loss, low shrinkage recordings that are environmentally stable, have high contrast refractive index variations, and can produce high-optical-quality devices. However, in any attempt to further develop the potential of such materials, a more physical and accurate theoretical model has become ever more necessary and important. In this paper, based on a detailed analysis of the photochemical mechanisms present in PQ/PMMA photopolymer during holographic grating formation, a set of rate equations are derived governing the temporal and spatial variations of each associated chemical species concentration. Experimental results are presented, which are then fit using this model. In this way, values for several kinetic parameters are estimated and their significance is discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001).
    [CrossRef]
  2. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
    [CrossRef]
  3. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746-1754 (2009).
    [CrossRef]
  4. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804-1812 (2010).
    [CrossRef]
  5. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
    [CrossRef]
  6. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006).
    [CrossRef]
  7. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A-Pure Appl. Opt. 10, 085302 (2008).
    [CrossRef]
  8. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543-8549 (2007).
    [CrossRef] [PubMed]
  9. Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
    [CrossRef]
  10. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
    [CrossRef]
  11. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010).
    [CrossRef]
  12. V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002).
    [CrossRef]
  13. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
    [CrossRef]
  14. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
    [CrossRef]
  15. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
    [CrossRef]
  16. G. J. Steckman, V. Shelkovnikov, V. Brerzhnaya, T. Gerasimova, I. Solomatine, and D. Psaltis, “Holographic recording in a photopolymer by optically induced detachment of chromophores,” Opt. Lett. 25, 607-609 (2000).
    [CrossRef]
  17. J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).
  18. A. Faldi, M. Tirrell, and T. P. Lodge, “Comparisons between polymer diffusion and chain radical termination kinetics: The importance of polydispersity,” Macromolecules 27, 4176-4183 (1994).
    [CrossRef]
  19. A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994).
    [CrossRef]
  20. V. Matusevich, A. Matusevich, R. Kowarschik, and L. P. Krul, “Holographic volume absorption grating in glass-like polymer recording material,” Opt. Express 161552-1558 (2008).
    [CrossRef] [PubMed]
  21. S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010).
    [CrossRef]
  22. A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly (methyl methacrylate): Holographic measurements,” Polym. Sci. Ser. A 38, 59-63 (1996).
  23. A. V. Veniaminov, E. Bartsch, and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744-750 (2005).
    [CrossRef]
  24. A. V. Veniaminov and E. Bartsch, “The shape of the relaxation curve in diffusion measurements with the aid of photoinduced gratings,” Opt. Spectrosc. 101, 290-298 (2006).
    [CrossRef]
  25. T. L. Tsai, C. C. Lin, G. L. Guo, and T. C. Chu, “Chemical kinetics of polymethyl methacrylate (PMMA) decomposition assessed by a microwave-assisted digestion system,” Ind. Eng. Chem. Res. 47, 2554-2560 (2008).
    [CrossRef]
  26. H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009).
    [CrossRef]
  27. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
    [CrossRef]
  28. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Yu. I. Matusevich, and L. P. Krul, “Nonlocal response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253-11258 (2008).
    [CrossRef] [PubMed]
  29. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310-1312 (1998).
    [CrossRef]
  30. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
    [CrossRef]
  31. N. J. Turro, Modern Molecular Chemistry (University Science, 1991), p. 103.
  32. S. Blaya, P. Acebal, L. Carretero, A. Murciano, R. F. Madrigal, and A. Fimia, “An explanation for the non-uniform grating effects during recording of diffraction gratings in photopolymers,” Opt. Express 18, 799-808 (2010).
    [CrossRef] [PubMed]
  33. M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
    [CrossRef]
  34. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
    [CrossRef]
  35. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).
  36. I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
    [CrossRef]
  37. D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003).
    [CrossRef]
  38. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999).
    [CrossRef]
  39. M. Russo, C. H. Chen, R. K. Kostuk, “Temperature dependence and characterization of gratings in PQ/PMMA holographic materials,” Proc. SPIE 6335, 633505 (2006).
    [CrossRef]

2010 (5)

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010).
[CrossRef]

S. Blaya, P. Acebal, L. Carretero, A. Murciano, R. F. Madrigal, and A. Fimia, “An explanation for the non-uniform grating effects during recording of diffraction gratings in photopolymers,” Opt. Express 18, 799-808 (2010).
[CrossRef] [PubMed]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804-1812 (2010).
[CrossRef]

2009 (6)

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746-1754 (2009).
[CrossRef]

2008 (5)

2007 (1)

2006 (4)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006).
[CrossRef]

A. V. Veniaminov and E. Bartsch, “The shape of the relaxation curve in diffusion measurements with the aid of photoinduced gratings,” Opt. Spectrosc. 101, 290-298 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. Russo, C. H. Chen, R. K. Kostuk, “Temperature dependence and characterization of gratings in PQ/PMMA holographic materials,” Proc. SPIE 6335, 633505 (2006).
[CrossRef]

2005 (2)

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

A. V. Veniaminov, E. Bartsch, and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744-750 (2005).
[CrossRef]

2004 (1)

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
[CrossRef]

2003 (1)

D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003).
[CrossRef]

2002 (1)

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002).
[CrossRef]

2001 (2)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001).
[CrossRef]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[CrossRef]

2000 (3)

1999 (1)

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999).
[CrossRef]

1998 (2)

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310-1312 (1998).
[CrossRef]

1996 (1)

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly (methyl methacrylate): Holographic measurements,” Polym. Sci. Ser. A 38, 59-63 (1996).

1994 (2)

A. Faldi, M. Tirrell, and T. P. Lodge, “Comparisons between polymer diffusion and chain radical termination kinetics: The importance of polydispersity,” Macromolecules 27, 4176-4183 (1994).
[CrossRef]

A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994).
[CrossRef]

1991 (1)

N. J. Turro, Modern Molecular Chemistry (University Science, 1991), p. 103.

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).

Acebal, P.

Aubrechta, I.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Bartsch, E.

A. V. Veniaminov and E. Bartsch, “The shape of the relaxation curve in diffusion measurements with the aid of photoinduced gratings,” Opt. Spectrosc. 101, 290-298 (2006).
[CrossRef]

A. V. Veniaminov, E. Bartsch, and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744-750 (2005).
[CrossRef]

Beléndez, A.

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

Blaya, S.

Brerzhnaya, V.

Butovskaya, G. V.

Carretero, L.

Chen, C. H.

M. Russo, C. H. Chen, R. K. Kostuk, “Temperature dependence and characterization of gratings in PQ/PMMA holographic materials,” Proc. SPIE 6335, 633505 (2006).
[CrossRef]

Chen, W. Z.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
[CrossRef]

Choi, D. H.

D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003).
[CrossRef]

Choi, S-H.

D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003).
[CrossRef]

Chu, T. C.

T. L. Tsai, C. C. Lin, G. L. Guo, and T. C. Chu, “Chemical kinetics of polymethyl methacrylate (PMMA) decomposition assessed by a microwave-assisted digestion system,” Ind. Eng. Chem. Res. 47, 2554-2560 (2008).
[CrossRef]

Close, C. E.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Faldi, A.

A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994).
[CrossRef]

A. Faldi, M. Tirrell, and T. P. Lodge, “Comparisons between polymer diffusion and chain radical termination kinetics: The importance of polydispersity,” Macromolecules 27, 4176-4183 (1994).
[CrossRef]

Feng, D-J.

D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003).
[CrossRef]

Fimia, A.

Gallego, S.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

García, C.

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

Gerasimova, T.

Gleeson, M. R.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804-1812 (2010).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746-1754 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Guo, G. L.

T. L. Tsai, C. C. Lin, G. L. Guo, and T. C. Chu, “Chemical kinetics of polymethyl methacrylate (PMMA) decomposition assessed by a microwave-assisted digestion system,” Ind. Eng. Chem. Res. 47, 2554-2560 (2008).
[CrossRef]

Guo, J.

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804-1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010).
[CrossRef]

Hoff, D.

Hsiao, Y. N.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
[CrossRef]

Hsu, K. Y.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
[CrossRef]

Jiang, Y.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009).
[CrossRef]

Jiang, Y. Y.

J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).

Kashin, O.

Kelly, J. V.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).

Korolev, V. V.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002).
[CrossRef]

Kostuk, R. K.

M. Russo, C. H. Chen, R. K. Kostuk, “Temperature dependence and characterization of gratings in PQ/PMMA holographic materials,” Proc. SPIE 6335, 633505 (2006).
[CrossRef]

Koudela, I.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Kowarschik, R.

Krul, L. P.

Lawrence, J. R.

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

Lin, C. C.

T. L. Tsai, C. C. Lin, G. L. Guo, and T. C. Chu, “Chemical kinetics of polymethyl methacrylate (PMMA) decomposition assessed by a microwave-assisted digestion system,” Ind. Eng. Chem. Res. 47, 2554-2560 (2008).
[CrossRef]

Lin, S. H.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
[CrossRef]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
[CrossRef]

Liu, H.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009).
[CrossRef]

Liu, S.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804-1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746-1754 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

Lodge, T. P.

A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994).
[CrossRef]

A. Faldi, M. Tirrell, and T. P. Lodge, “Comparisons between polymer diffusion and chain radical termination kinetics: The importance of polydispersity,” Macromolecules 27, 4176-4183 (1994).
[CrossRef]

Luo, S. H.

J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).

Madrigal, R. F.

Mahilny, U. V.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A-Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006).
[CrossRef]

Marmysh, D. N.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A-Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006).
[CrossRef]

Matusevich, A.

Matusevich, V.

Matusevich, Yu. I.

McLeod, R. R.

Meerwall, E. V.

A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994).
[CrossRef]

Meng, Q. X.

J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).

Milera, M.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Mumbru, J.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[CrossRef]

Murashko, E. A.

Murciano, A.

Neipp, C.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

O'Neill, F. T.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001).
[CrossRef]

Ortuño, M.

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

Pascual, I.

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

Popov, A. P.

A. V. Veniaminov, E. Bartsch, and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744-750 (2005).
[CrossRef]

Psaltis, D.

Russo, M.

M. Russo, C. H. Chen, R. K. Kostuk, “Temperature dependence and characterization of gratings in PQ/PMMA holographic materials,” Proc. SPIE 6335, 633505 (2006).
[CrossRef]

Sabol, D.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

Sedunov, Yu. N.

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly (methyl methacrylate): Holographic measurements,” Polym. Sci. Ser. A 38, 59-63 (1996).

Shelkovnikov, V.

Sheridan, J. T.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804-1812 (2010).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746-1754 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

Sheridan, John T.

S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010).
[CrossRef]

Sillescu, H.

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999).
[CrossRef]

Solomatine, I.

Stankevich, A. I.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006).
[CrossRef]

Steckman, G. J.

Sun, X.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009).
[CrossRef]

Sun, X. D.

J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).

Syutkin, V. M.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002).
[CrossRef]

Tirrell, M.

A. Faldi, M. Tirrell, and T. P. Lodge, “Comparisons between polymer diffusion and chain radical termination kinetics: The importance of polydispersity,” Macromolecules 27, 4176-4183 (1994).
[CrossRef]

A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994).
[CrossRef]

Tolkatchev, V. A.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002).
[CrossRef]

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A-Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006).
[CrossRef]

Tolstik, E.

Tsai, T. L.

T. L. Tsai, C. C. Lin, G. L. Guo, and T. C. Chu, “Chemical kinetics of polymethyl methacrylate (PMMA) decomposition assessed by a microwave-assisted digestion system,” Ind. Eng. Chem. Res. 47, 2554-2560 (2008).
[CrossRef]

Turro, N. J.

N. J. Turro, Modern Molecular Chemistry (University Science, 1991), p. 103.

Veniaminov, A. V.

A. V. Veniaminov and E. Bartsch, “The shape of the relaxation curve in diffusion measurements with the aid of photoinduced gratings,” Opt. Spectrosc. 101, 290-298 (2006).
[CrossRef]

A. V. Veniaminov, E. Bartsch, and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744-750 (2005).
[CrossRef]

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999).
[CrossRef]

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly (methyl methacrylate): Holographic measurements,” Polym. Sci. Ser. A 38, 59-63 (1996).

Vyazovkin, V. L.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002).
[CrossRef]

Wang, J.

J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).

Whang, W. T.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
[CrossRef]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
[CrossRef]

Yoon, H.

D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003).
[CrossRef]

Yu, D.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009).
[CrossRef]

Zhou, G.

Appl. Phys. B (3)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010).
[CrossRef]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).

Chin. Phys. B (1)

J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).

Ind. Eng. Chem. Res. (1)

T. L. Tsai, C. C. Lin, G. L. Guo, and T. C. Chu, “Chemical kinetics of polymethyl methacrylate (PMMA) decomposition assessed by a microwave-assisted digestion system,” Ind. Eng. Chem. Res. 47, 2554-2560 (2008).
[CrossRef]

J. Appl. Phys. (3)

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. Mod. Opt. (1)

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

J. Opt. A-Pure Appl. Opt. (1)

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A-Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

Macro. Res. (1)

D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003).
[CrossRef]

Macromolecules (4)

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010).
[CrossRef]

A. Faldi, M. Tirrell, and T. P. Lodge, “Comparisons between polymer diffusion and chain radical termination kinetics: The importance of polydispersity,” Macromolecules 27, 4176-4183 (1994).
[CrossRef]

A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994).
[CrossRef]

Opt. Commun. (1)

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[CrossRef]

Opt. Eng. (1)

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Spectrosc. (2)

A. V. Veniaminov, E. Bartsch, and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744-750 (2005).
[CrossRef]

A. V. Veniaminov and E. Bartsch, “The shape of the relaxation curve in diffusion measurements with the aid of photoinduced gratings,” Opt. Spectrosc. 101, 290-298 (2006).
[CrossRef]

Optik (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001).
[CrossRef]

Phys. Scr. (1)

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005).
[CrossRef]

Polym. Sci. Ser. A (1)

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly (methyl methacrylate): Holographic measurements,” Polym. Sci. Ser. A 38, 59-63 (1996).

Proc. SPIE (1)

M. Russo, C. H. Chen, R. K. Kostuk, “Temperature dependence and characterization of gratings in PQ/PMMA holographic materials,” Proc. SPIE 6335, 633505 (2006).
[CrossRef]

Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu (1)

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002).
[CrossRef]

Other (1)

N. J. Turro, Modern Molecular Chemistry (University Science, 1991), p. 103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the radical generation and formations of photoproduct.

Fig. 2
Fig. 2

Flowchart of the major photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material.

Fig. 3
Fig. 3

Spatial distribution of the ground state dye concentration PQ at a grating period Λ = 3 μm for an exposure intensity I 0 = 80 mW / cm 2 and various exposure times t = 150 s (solid curve), t = 550 s (dashed curve), and t = 1000 s (short dashed curve).

Fig. 4
Fig. 4

Spatial distribution of the semiquinone radical concentration HPQ at a grating period Λ = 3 μm , for an exposure intensity I 0 = 80 mW / cm 2 , exposure times t = 150 s (solid curve), t = 550 s (long dashed curve), and t = 1000 s (dashed curve), and with increased diffusion constant D PQ (short dashed curve).

Fig. 5
Fig. 5

Comparison of the absorbed intensity I a ( x , t ) across one grating period 0 x Λ and over the exposure time t = 1000 s for exposure intensity I 0 = 80 mW / cm 2 of material layer of thicknesses (a)  d = 1 mm , (b)  d = 500 μm , (c)  d = 100 μm , and (d)  d = 50 μm .

Fig. 6
Fig. 6

Evolution of formed photoproduct concentration across tow grating periods Λ x Λ and over the exposure time t = 2000 s for exposure intensity I 0 = 80 mW / cm 2 .

Fig. 7
Fig. 7

Fit (solid curve) to the experimental data (dots) of normalized transmission curve for exposure intensity I 0 = 80 mW / cm 2 over the exposure time t = 800 s .

Fig. 8
Fig. 8

Fits to experimental data of index modulations for recording grating periods: (a)  Λ = 0.7 μm (solid curve with triangles), (b)  Λ = 1.5 μm (dashed curve with squares), and (c)  Λ = 3 μm (short dashed curve with circles), and for exposure intensity I 0 = 80 mw / cm 2 .

Tables (1)

Tables Icon

Table 1 Parameter Values Extracted from Fits to Experimental Obtained Transmission Curves and Growth Curves of Refractive Index Modulation

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

PQ + h υ k a PQ 1 * ,
PQ 1 * k st PQ 3 * ,
d [ PQ ( x , t ) ] d t = d d x { D PQ ( x , t ) d [ PQ ( x , t ) ] d x } k a [ PQ ( x , t ) ] + r 1 [ PQ 1 * ( x , t ) ] + r 2 [ PQ 3 * ( x , t ) ] ,
d [ PQ 1 * ( x , t ) ] d t = k a [ PQ ( x , t ) ] k st [ PQ 1 * ( x , t ) ] r 1 [ PQ 1 * ( x , t ) ] .
PQ * 3 + RH k i HPQ + R ,
HPQ + R k t HPQR ,
HPQ + HPQ k rc recombined product ,
d [ PQ 3 * ( x , t ) ] d t = k st [ PQ 1 * ( x , t ) ] k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] r 2 [ PQ 3 * ( x , t ) ] k b [ PQ 3 * ( x , t ) ] ,
d [ RH ( x , t ) ] d t = k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] ,
d [ HPQ ( x , t ) ] d t = k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] k rc [ HPQ ( x , t ) ] 2 G ( x , x ) k t [ HPQ ( x , t ) ] [ R ( x , t ) ] d x ,
d [ R ( x , t ) ] d t = k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] G ( x , x ) k t [ HPQ ( x , t ) ] [ R ( x , t ) ] d x .
G ( x , x ) = 1 2 π σ exp [ ( x x ) 2 2 σ ] ,
d [ M ( x , t ) ] d t = d d x { D M ( x , t ) d [ M ( x , t ) ] d x } k i [ PQ 3 * ( x , t ) ] [ M ( x , t ) ] ,
d [ P ( x , t ) ] d t = k i [ PQ 3 ( x , t ) ] [ M ( x , t ) ] + G ( x , x ) k t [ HPQ ( x , t ) ] [ R ( x , t ) ] d x .
[ X ( x , t ) ] = i = 0 m X i ( t ) cos ( i K x ) ,
I a ( x , t ) = I 0 T sf { 1 exp [ ε [ PQ ( x , t ) ] d ] } ,
η ( t ) = sin 2 [ π d n 1 ( t ) λ p cos θ in ] ,
n 2 1 n 2 + 2 = φ RH n RH 2 1 n RH 2 + 2 + φ M n M 2 1 n M 2 + 2 + φ P n P 2 1 n P 2 + 2 + φ B n B 2 1 n B 2 + 2 ,
φ RH ( t ) + φ M ( t ) + φ P ( t ) + φ B ( t ) = 1.
n 1 ( t ) = ( n Dark 2 + 2 ) 2 6 n Dark [ φ RH 1 ( t ) ( n RH 2 1 n RH 2 + 2 n B 2 1 n B 2 + 2 ) + φ M 1 ( t ) ( n M 2 1 n M 2 + 2 n B 2 1 n B 2 + 2 ) + φ P 1 ( t ) ( n P 2 1 n P 2 + 2 n B 2 1 n B 2 + 2 ) ] ,
T ( t ) = T sf exp { ε [ PQ ( t ) ] d } ,

Metrics