Abstract

We propose and analyze a scheme for creation of coherent superposition of metastable states in a tripod-structured atom using frequency-chirped laser pulses with negligible excitation of the atoms. The underlying physics of the scheme is explained using the formalism of adiabatic states. We show that the proposed scheme may be equally efficient in homogeneously and Doppler-broadened media. By numerically solving the master equation for the density matrix operator, we analyze the influence of relaxation processes on the efficiency of the creation of superposition states. We show that the proposed scheme is robust against small-to-medium variations of the laser field’s parameters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “EIT: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  3. P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
    [CrossRef]
  4. E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002).
    [CrossRef]
  5. J. B. Watson, A. Saprera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A 53, R1962–R1965 (1996).
    [CrossRef] [PubMed]
  6. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
    [CrossRef] [PubMed]
  7. M. D. Lukin, P. R. Hemmer, M. Loeffler, and M. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
    [CrossRef]
  8. C. P. Williams and S. H. Clearwater, Explorations in Quantum Computing (Springer-Verlag, 1997).
  9. G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Coherent writing and reading of information using frequency-chirped short bichromatic laser pulses,” Opt. Express 4, 113–120 (1999).
    [CrossRef] [PubMed]
  10. G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Three-level Λ-atom in the field of frequency-chirped bichromatic laser pulses: writing and storage of optical phase information,” Phys. Rev. A 64, 013408 (2001).
    [CrossRef]
  11. A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
    [CrossRef]
  12. A. E. Kozhekin, K. Molmer, and E. Polzik, “Quantum memory for light,” Phys. Rev. A 62, 033809 (2000).
    [CrossRef]
  13. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
    [CrossRef]
  14. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
    [CrossRef] [PubMed]
  15. G. P. Djotyan, N. Sandor, J. S. Bakos, and Zs. Sörlei, “Optical phase information writing and storage in populations of metastable quantum states,” J. Opt. Soc. Am. B 26, 1959–1966(2009).
    [CrossRef]
  16. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  17. A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
    [CrossRef] [PubMed]
  18. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
    [CrossRef]
  19. R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via STIRAP with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
    [CrossRef]
  20. H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4, 77 (1999).
    [CrossRef] [PubMed]
  21. F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
    [CrossRef] [PubMed]
  22. N. Sangouard, S. Guérin, L. P. Yatsenko, and T. Halfmann, “Preparation of coherent superposition in a three-state system by adiabatic passage,” Phys. Rev. A 70, 013415 (2004).
    [CrossRef]
  23. R. G. Unanyan, M. E. Pietrzyk, B. W. Shore, and K. Bergmann, “Adiabatic creation of coherent superposition states in atomic beams,” Phys. Rev. A 70, 053404 (2004).
    [CrossRef]
  24. Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
    [CrossRef]
  25. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
    [CrossRef]
  26. L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
    [CrossRef]
  27. L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
    [CrossRef]
  28. A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
    [CrossRef]
  29. G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).
  30. G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Coherent control of atomic quantum states by single frequency-chirped laser pulses,” Phys. Rev. A 70, 063406 (2004).
    [CrossRef]
  31. G. P. Djotyan, J. S. Bakos, Zs. Sörlei, J. Szigeti, and D. Dzsotjan, “Creation of a coherent superposition of quantum states by a single frequency-chirped short laser pulse,” J. Opt. Soc. Am. B 25, 166–174 (2008).
    [CrossRef]
  32. L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
    [CrossRef]
  33. J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
    [CrossRef] [PubMed]
  34. S. Chelkowsky, A. D. Bandrauk, and P. B. Corcum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–8 (1990).
    [CrossRef]
  35. Y. B. Band and O. Magnes, “Chirped adiabatic passage with temporally delayed pulses,” Phys. Rev. A 50, 584–594 (1994).
    [CrossRef] [PubMed]
  36. G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Population transfer in three-level L atoms with Doppler-broadened transition lines by a single frequency-chirped short laser pulse,” J. Opt. Soc. Am. B 17, 107–113 (2000).
    [CrossRef]
  37. V. S. Malinovsky and J. I. Krause, “Efficiency and robustness of coherent population transfer with intense, chirped laser pulse,” Phys. Rev. A 63, 043415 (2001).
    [CrossRef]
  38. P. A. Ivanov, N. V. Vitanov, and K. Bergmann, “Effect of dephasing on stimulated Raman adiabatic passage,” Phys. Rev. A 70, 063409 (2004).
    [CrossRef]
  39. Q. Shi and E. Geva, “Stimulated Raman adiabatic passage in the presence of dephasing,” J. Chem. Phys. 119, 11773 (2003).
    [CrossRef]
  40. C. Lazarou and N. V. Vitanov, “Dephasing effects on stimulated Raman adiabatic passage in tripod configurations,” Phys. Rev. A 82, 033437 (2010).
    [CrossRef]
  41. M. Demirplak and S. T. Rice, “Optical control of molecular dynamics,” J. Chem. Phys. 116, 8028–8035 (2002).
    [CrossRef]
  42. A. Messiah, Quantum Mechanics (North-Holland, 1962), Vol.  2.
  43. B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).

2010 (2)

L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
[CrossRef]

C. Lazarou and N. V. Vitanov, “Dephasing effects on stimulated Raman adiabatic passage in tripod configurations,” Phys. Rev. A 82, 033437 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

2005 (3)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “EIT: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

2004 (4)

N. Sangouard, S. Guérin, L. P. Yatsenko, and T. Halfmann, “Preparation of coherent superposition in a three-state system by adiabatic passage,” Phys. Rev. A 70, 013415 (2004).
[CrossRef]

R. G. Unanyan, M. E. Pietrzyk, B. W. Shore, and K. Bergmann, “Adiabatic creation of coherent superposition states in atomic beams,” Phys. Rev. A 70, 053404 (2004).
[CrossRef]

P. A. Ivanov, N. V. Vitanov, and K. Bergmann, “Effect of dephasing on stimulated Raman adiabatic passage,” Phys. Rev. A 70, 063409 (2004).
[CrossRef]

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Coherent control of atomic quantum states by single frequency-chirped laser pulses,” Phys. Rev. A 70, 063406 (2004).
[CrossRef]

2003 (3)

Q. Shi and E. Geva, “Stimulated Raman adiabatic passage in the presence of dephasing,” J. Chem. Phys. 119, 11773 (2003).
[CrossRef]

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
[CrossRef] [PubMed]

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

2002 (6)

E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002).
[CrossRef]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
[CrossRef]

M. Demirplak and S. T. Rice, “Optical control of molecular dynamics,” J. Chem. Phys. 116, 8028–8035 (2002).
[CrossRef]

2001 (2)

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Three-level Λ-atom in the field of frequency-chirped bichromatic laser pulses: writing and storage of optical phase information,” Phys. Rev. A 64, 013408 (2001).
[CrossRef]

V. S. Malinovsky and J. I. Krause, “Efficiency and robustness of coherent population transfer with intense, chirped laser pulse,” Phys. Rev. A 63, 043415 (2001).
[CrossRef]

2000 (3)

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Population transfer in three-level L atoms with Doppler-broadened transition lines by a single frequency-chirped short laser pulse,” J. Opt. Soc. Am. B 17, 107–113 (2000).
[CrossRef]

A. E. Kozhekin, K. Molmer, and E. Polzik, “Quantum memory for light,” Phys. Rev. A 62, 033809 (2000).
[CrossRef]

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

1999 (4)

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
[CrossRef]

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Coherent writing and reading of information using frequency-chirped short bichromatic laser pulses,” Opt. Express 4, 113–120 (1999).
[CrossRef] [PubMed]

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4, 77 (1999).
[CrossRef] [PubMed]

1998 (3)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[CrossRef]

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via STIRAP with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Loeffler, and M. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

1997 (1)

C. P. Williams and S. H. Clearwater, Explorations in Quantum Computing (Springer-Verlag, 1997).

1996 (2)

J. B. Watson, A. Saprera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A 53, R1962–R1965 (1996).
[CrossRef] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

1994 (1)

Y. B. Band and O. Magnes, “Chirped adiabatic passage with temporally delayed pulses,” Phys. Rev. A 50, 584–594 (1994).
[CrossRef] [PubMed]

1993 (1)

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef] [PubMed]

1992 (1)

J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
[CrossRef] [PubMed]

1990 (2)

S. Chelkowsky, A. D. Bandrauk, and P. B. Corcum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–8 (1990).
[CrossRef]

B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).

1987 (1)

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

1962 (1)

A. Messiah, Quantum Mechanics (North-Holland, 1962), Vol.  2.

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Bakos, J.

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

Bakos, J. S.

Band, Y. B.

Y. B. Band and O. Magnes, “Chirped adiabatic passage with temporally delayed pulses,” Phys. Rev. A 50, 584–594 (1994).
[CrossRef] [PubMed]

Bandrauk, A. D.

S. Chelkowsky, A. D. Bandrauk, and P. B. Corcum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–8 (1990).
[CrossRef]

Barthel, C.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Bergmann, K.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

P. A. Ivanov, N. V. Vitanov, and K. Bergmann, “Effect of dephasing on stimulated Raman adiabatic passage,” Phys. Rev. A 70, 063409 (2004).
[CrossRef]

R. G. Unanyan, M. E. Pietrzyk, B. W. Shore, and K. Bergmann, “Adiabatic creation of coherent superposition states in atomic beams,” Phys. Rev. A 70, 053404 (2004).
[CrossRef]

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
[CrossRef] [PubMed]

L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
[CrossRef]

L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
[CrossRef]

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4, 77 (1999).
[CrossRef] [PubMed]

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via STIRAP with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[CrossRef]

Burnett, K.

J. B. Watson, A. Saprera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A 53, R1962–R1965 (1996).
[CrossRef] [PubMed]

Chelkowsky, S.

S. Chelkowsky, A. D. Bandrauk, and P. B. Corcum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–8 (1990).
[CrossRef]

Chen, X.

J. B. Watson, A. Saprera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A 53, R1962–R1965 (1996).
[CrossRef] [PubMed]

Clearwater, S. H.

C. P. Williams and S. H. Clearwater, Explorations in Quantum Computing (Springer-Verlag, 1997).

Corcum, P. B.

S. Chelkowsky, A. D. Bandrauk, and P. B. Corcum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–8 (1990).
[CrossRef]

Demeter, G.

Demirplak, M.

M. Demirplak and S. T. Rice, “Optical control of molecular dynamics,” J. Chem. Phys. 116, 8028–8035 (2002).
[CrossRef]

Deng, L.

L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
[CrossRef]

Djotyan, G.

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

Djotyan, G. P.

Dzsotjan, D.

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Fernandez, R. G.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “EIT: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via STIRAP with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

Gandhi, S. R.

J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
[CrossRef] [PubMed]

Geva, E.

Q. Shi and E. Geva, “Stimulated Raman adiabatic passage in the presence of dephasing,” J. Chem. Phys. 119, 11773 (2003).
[CrossRef]

Gong, S.

L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
[CrossRef]

Guérin, S.

N. Sangouard, S. Guérin, L. P. Yatsenko, and T. Halfmann, “Preparation of coherent superposition in a three-state system by adiabatic passage,” Phys. Rev. A 70, 013415 (2004).
[CrossRef]

Habscheid, C.

Hager, J.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
[CrossRef]

Halfmann, T.

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

N. Sangouard, S. Guérin, L. P. Yatsenko, and T. Halfmann, “Preparation of coherent superposition in a three-state system by adiabatic passage,” Phys. Rev. A 70, 013415 (2004).
[CrossRef]

L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
[CrossRef]

Hariharan, A.

J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
[CrossRef] [PubMed]

Harris, S. E.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Heinz, M.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
[CrossRef] [PubMed]

Hemmer, P.

E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002).
[CrossRef]

Hemmer, P. R.

M. D. Lukin, P. R. Hemmer, M. Loeffler, and M. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Ignacz, P.

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “EIT: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Ivanov, P. A.

P. A. Ivanov, N. V. Vitanov, and K. Bergmann, “Effect of dephasing on stimulated Raman adiabatic passage,” Phys. Rev. A 70, 063409 (2004).
[CrossRef]

Jain, M.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Karpati, A.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Kimble, H. J.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef] [PubMed]

Kis, Z.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Klein, K.

Kocharovskaya, O.

E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002).
[CrossRef]

Kozhekin, A. E.

A. E. Kozhekin, K. Molmer, and E. Polzik, “Quantum memory for light,” Phys. Rev. A 62, 033809 (2000).
[CrossRef]

Král, P.

P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Krause, J. I.

V. S. Malinovsky and J. I. Krause, “Efficiency and robustness of coherent population transfer with intense, chirped laser pulse,” Phys. Rev. A 63, 043415 (2001).
[CrossRef]

Kuznetsova, E.

E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002).
[CrossRef]

Lazarou, C.

C. Lazarou and N. V. Vitanov, “Dephasing effects on stimulated Raman adiabatic passage in tripod configurations,” Phys. Rev. A 82, 033437 (2010).
[CrossRef]

Loeffler, M.

M. D. Lukin, P. R. Hemmer, M. Loeffler, and M. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Lukin, M. D.

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Loeffler, and M. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Magnes, O.

Y. B. Band and O. Magnes, “Chirped adiabatic passage with temporally delayed pulses,” Phys. Rev. A 50, 584–594 (1994).
[CrossRef] [PubMed]

Mair, A.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
[CrossRef]

Malinovsky, V. S.

V. S. Malinovsky and J. I. Krause, “Efficiency and robustness of coherent population transfer with intense, chirped laser pulse,” Phys. Rev. A 63, 043415 (2001).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “EIT: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Marte, P.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef] [PubMed]

Melinger, J. S.

J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
[CrossRef] [PubMed]

Merriam, A. J.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Messiah, A.

A. Messiah, Quantum Mechanics (North-Holland, 1962), Vol.  2.

Molmer, K.

A. E. Kozhekin, K. Molmer, and E. Polzik, “Quantum memory for light,” Phys. Rev. A 62, 033809 (2000).
[CrossRef]

Monroe, C.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

Nie, Y.

L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
[CrossRef]

Parkins, A. S.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef] [PubMed]

Phillips, D. F.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
[CrossRef]

Pietrzyk, M. E.

R. G. Unanyan, M. E. Pietrzyk, B. W. Shore, and K. Bergmann, “Adiabatic creation of coherent superposition states in atomic beams,” Phys. Rev. A 70, 053404 (2004).
[CrossRef]

Polzik, E.

A. E. Kozhekin, K. Molmer, and E. Polzik, “Quantum memory for light,” Phys. Rev. A 62, 033809 (2000).
[CrossRef]

Rangelov, A. A.

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

Rice, S. T.

M. Demirplak and S. T. Rice, “Optical control of molecular dynamics,” J. Chem. Phys. 116, 8028–8035 (2002).
[CrossRef]

Rickes, T.

L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
[CrossRef]

Sandor, N.

Sangouard, N.

N. Sangouard, S. Guérin, L. P. Yatsenko, and T. Halfmann, “Preparation of coherent superposition in a three-state system by adiabatic passage,” Phys. Rev. A 70, 013415 (2004).
[CrossRef]

Saprera, A.

J. B. Watson, A. Saprera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A 53, R1962–R1965 (1996).
[CrossRef] [PubMed]

Scully, M.

M. D. Lukin, P. R. Hemmer, M. Loeffler, and M. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Scully, M. O.

E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002).
[CrossRef]

Shapiro, M.

P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Shi, Q.

Q. Shi and E. Geva, “Stimulated Raman adiabatic passage in the presence of dephasing,” J. Chem. Phys. 119, 11773 (2003).
[CrossRef]

Shiqi, J.

L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
[CrossRef]

Shore, B. W.

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

R. G. Unanyan, M. E. Pietrzyk, B. W. Shore, and K. Bergmann, “Adiabatic creation of coherent superposition states in atomic beams,” Phys. Rev. A 70, 053404 (2004).
[CrossRef]

L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
[CrossRef]

L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
[CrossRef]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[CrossRef]

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via STIRAP with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).

Sörlei, Zs.

G. P. Djotyan, N. Sandor, J. S. Bakos, and Zs. Sörlei, “Optical phase information writing and storage in populations of metastable quantum states,” J. Opt. Soc. Am. B 26, 1959–1966(2009).
[CrossRef]

G. P. Djotyan, J. S. Bakos, Zs. Sörlei, J. Szigeti, and D. Dzsotjan, “Creation of a coherent superposition of quantum states by a single frequency-chirped short laser pulse,” J. Opt. Soc. Am. B 25, 166–174 (2008).
[CrossRef]

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Coherent control of atomic quantum states by single frequency-chirped laser pulses,” Phys. Rev. A 70, 063406 (2004).
[CrossRef]

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Three-level Λ-atom in the field of frequency-chirped bichromatic laser pulses: writing and storage of optical phase information,” Phys. Rev. A 64, 013408 (2001).
[CrossRef]

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Population transfer in three-level L atoms with Doppler-broadened transition lines by a single frequency-chirped short laser pulse,” J. Opt. Soc. Am. B 17, 107–113 (2000).
[CrossRef]

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Coherent writing and reading of information using frequency-chirped short bichromatic laser pulses,” Opt. Express 4, 113–120 (1999).
[CrossRef] [PubMed]

Suominen, K. A.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

Szigeti, J.

G. P. Djotyan, J. S. Bakos, Zs. Sörlei, J. Szigeti, and D. Dzsotjan, “Creation of a coherent superposition of quantum states by a single frequency-chirped short laser pulse,” J. Opt. Soc. Am. B 25, 166–174 (2008).
[CrossRef]

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

Thanopulos, I.

P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Theuer, H.

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4, 77 (1999).
[CrossRef] [PubMed]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[CrossRef]

Toth, Z.

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

Tull, J. X.

J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
[CrossRef] [PubMed]

Unanyan, R.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via STIRAP with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

Unanyan, R. G.

R. G. Unanyan, M. E. Pietrzyk, B. W. Shore, and K. Bergmann, “Adiabatic creation of coherent superposition states in atomic beams,” Phys. Rev. A 70, 053404 (2004).
[CrossRef]

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4, 77 (1999).
[CrossRef] [PubMed]

Vardi, A.

L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
[CrossRef]

Vewinger, F.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
[CrossRef] [PubMed]

Vitanov, N. V.

C. Lazarou and N. V. Vitanov, “Dephasing effects on stimulated Raman adiabatic passage in tripod configurations,” Phys. Rev. A 82, 033437 (2010).
[CrossRef]

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

P. A. Ivanov, N. V. Vitanov, and K. Bergmann, “Effect of dephasing on stimulated Raman adiabatic passage,” Phys. Rev. A 70, 063409 (2004).
[CrossRef]

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
[CrossRef] [PubMed]

L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
[CrossRef]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

Walsworth, R. L.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
[CrossRef]

Warren, W. S.

J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
[CrossRef] [PubMed]

Watson, J. B.

J. B. Watson, A. Saprera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A 53, R1962–R1965 (1996).
[CrossRef] [PubMed]

Williams, C. P.

C. P. Williams and S. H. Clearwater, Explorations in Quantum Computing (Springer-Verlag, 1997).

Xia, H.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Yang, X.

L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
[CrossRef]

Yatsenko, L.

L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
[CrossRef]

Yatsenko, L. P.

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

N. Sangouard, S. Guérin, L. P. Yatsenko, and T. Halfmann, “Preparation of coherent superposition in a three-state system by adiabatic passage,” Phys. Rev. A 70, 013415 (2004).
[CrossRef]

L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
[CrossRef]

Yin, G. Y.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Zoller, P.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

Q. Shi and E. Geva, “Stimulated Raman adiabatic passage in the presence of dephasing,” J. Chem. Phys. 119, 11773 (2003).
[CrossRef]

M. Demirplak and S. T. Rice, “Optical control of molecular dynamics,” J. Chem. Phys. 116, 8028–8035 (2002).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (2)

L. Deng, Y. Nie, X. Yang, J. Shiqi, and S. Gong, “Creation of an arbitrary coherent superposition state with chirped delayed pulses,” J. Phys. B 43, 035401 (2010).
[CrossRef]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

Laser Phys. (1)

G. Djotyan, J. Bakos, Zs. Sörlei, J. Szigeti, P. Ignacz, and Z. Toth, “Interaction of a sequence of frequency-chirped bichromatic laser pulses with an ensemble of Λ-atoms: population trapping and coherent optical pumping,” Laser Phys. 10, 355–359 (2000).

Nature (1)

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

Opt. Commun. (2)

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via STIRAP with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

L. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204, 413–423(2002).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (16)

A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
[CrossRef]

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Coherent control of atomic quantum states by single frequency-chirped laser pulses,” Phys. Rev. A 70, 063406 (2004).
[CrossRef]

L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, “Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
[CrossRef]

N. Sangouard, S. Guérin, L. P. Yatsenko, and T. Halfmann, “Preparation of coherent superposition in a three-state system by adiabatic passage,” Phys. Rev. A 70, 013415 (2004).
[CrossRef]

R. G. Unanyan, M. E. Pietrzyk, B. W. Shore, and K. Bergmann, “Adiabatic creation of coherent superposition states in atomic beams,” Phys. Rev. A 70, 053404 (2004).
[CrossRef]

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Y. B. Band and O. Magnes, “Chirped adiabatic passage with temporally delayed pulses,” Phys. Rev. A 50, 584–594 (1994).
[CrossRef] [PubMed]

V. S. Malinovsky and J. I. Krause, “Efficiency and robustness of coherent population transfer with intense, chirped laser pulse,” Phys. Rev. A 63, 043415 (2001).
[CrossRef]

P. A. Ivanov, N. V. Vitanov, and K. Bergmann, “Effect of dephasing on stimulated Raman adiabatic passage,” Phys. Rev. A 70, 063409 (2004).
[CrossRef]

C. Lazarou and N. V. Vitanov, “Dephasing effects on stimulated Raman adiabatic passage in tripod configurations,” Phys. Rev. A 82, 033437 (2010).
[CrossRef]

E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002).
[CrossRef]

J. B. Watson, A. Saprera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A 53, R1962–R1965 (1996).
[CrossRef] [PubMed]

G. P. Djotyan, J. S. Bakos, and Zs. Sörlei, “Three-level Λ-atom in the field of frequency-chirped bichromatic laser pulses: writing and storage of optical phase information,” Phys. Rev. A 64, 013408 (2001).
[CrossRef]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802 (2002).
[CrossRef]

A. E. Kozhekin, K. Molmer, and E. Polzik, “Quantum memory for light,” Phys. Rev. A 62, 033809 (2000).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

M. D. Lukin, P. R. Hemmer, M. Loeffler, and M. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001, (2003).
[CrossRef] [PubMed]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef] [PubMed]

J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68, 2000 (1992).
[CrossRef] [PubMed]

S. Chelkowsky, A. D. Bandrauk, and P. B. Corcum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–8 (1990).
[CrossRef]

Rev. Mod. Phys. (4)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[CrossRef]

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “EIT: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Other (4)

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

C. P. Williams and S. H. Clearwater, Explorations in Quantum Computing (Springer-Verlag, 1997).

A. Messiah, Quantum Mechanics (North-Holland, 1962), Vol.  2.

B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Level structure of the tripodlike atom and the interacting FC laser pulses for the cases of (a) positive and (b) negative Raman detuning and two different initial conditions for the atomic population. The inset shows a Gaussian laser pulse with positive linear chirp.

Fig. 2
Fig. 2

Time dependence of the eigenvalues (quasi-energies) of the Hamiltonian equation [Eq. (14)] in cases of (a) positive and (b) negative Raman detuning; | δ 13 | · τ p = 250 in both cases. All parameters are normalized to the pulse duration τ p .

Fig. 3
Fig. 3

Time evolution of the populations and coherences in the case of positive Raman detuning. Inset: the phase of the coherence ρ 12 . The parameters applied are W 1 τ p = 500 , W 2 τ p = 475 , W 3 τ p = 525 , β τ p 2 = 2500 , and | δ 13 | τ p = 250 .

Fig. 4
Fig. 4

Time evolution of the populations and coherences in the case of negative Raman detuning. Inset: the phase of the coherence ρ 12 . The parameters used are the same as in Fig. 3.

Fig. 5
Fig. 5

Resulting absolute values of the coherence ρ 12 versus the ratio of the peak values of the Rabi frequencies W 2 / W 1 for the cases of (a) positive and (b) negative Raman detuning calculated from the dressed states analysis. The dots are the results of the numerical solution of the master equation, Eqs. (5), in the absence of relaxation processes. The following values of the parameters are applied: W 1 τ p = 250 , W 3 τ p = 275 , β τ p 2 = 2500 , | δ 13 | τ p = 250 , and W 2 τ p is varying.

Fig. 6
Fig. 6

Probability distribution (normalized to unity) for atomic gas at temperatures equal to 300, 500, and 700 K .

Fig. 7
Fig. 7

Final populations and coherences established in the atoms at the end of interaction with laser pulses as a function of the normalized single-photon detuning Δ ˜ = Δ τ p for the cases of the (a) and (b) positive and (c) and (d) negative Raman detuning. The applied pa rameters are W 1 τ p = W 2 τ p = 250 , W 3 τ p = 275 β τ p 2 = 1060 , δ 13 τ p = 100 , and τ p = 10 6 s .

Fig. 8
Fig. 8

Average value of the final coherence between states | 1 and | 2 in the cases of (a)  δ 13 > 0 and (b)  δ 13 < 0 as a function of the speed of chirp for the temperatures of the gas equal to 300  (red), 500  (blue), and 700 K (green). The applied parameters are the same as in Fig. 7.

Fig. 9
Fig. 9

Final populations of the atomic states in the case of (a) positive and (b) negative Raman detuning as a function of the dimensionless longitudinal relaxation rate in the absence of transverse relaxation processes. Insets: the phase of the created coherence ρ 12 . The parameters used are W 1 τ p = 500 , W 2 τ p = 475 , W 3 τ p = 525 , β τ p 2 = 2500 , and | δ 13 | τ p = 250 .

Fig. 10
Fig. 10

Final populations of the atomic states in the case of (a) positive and (b) negative Raman detuning as a function of the dimensionless transverse relaxation rate in the absence of longitudinal relaxation. Insets: the phase of the created coherence ρ 12 . The parameters applied are W 1 τ p = 500 , W 2 τ p = 475 , W 3 τ p = 525 , β τ p 2 = 2500 , and | δ 13 | τ p = 250 .

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

i t ρ ^ = [ H ^ , ρ ^ ] + R ^ ,
H ^ = ( 0 exp ( i Δ t ) Ω 1 exp ( i Δ t ) Ω 2 exp ( i δ 3 t ) Ω 3 exp ( i Δ t ) Ω 1 * 0 0 0 exp ( i Δ t ) Ω 2 * 0 0 0 exp ( i δ 3 t ) Ω 3 * 0 0 0 ) ,
R ^ = i ( Γ ρ 00 ( γ 01 + Γ / 2 ) ρ 01 ( γ 02 + Γ / 2 ) ρ 02 ( γ 03 + Γ / 2 ) ρ 03 ( γ 01 + Γ / 2 ) ρ 01 * Γ 1 ρ 00 γ 12 ρ 12 γ 13 ρ 13 ( γ 02 + Γ / 2 ) ρ 02 * γ 12 ρ 12 * Γ 2 ρ 00 γ 23 ρ 23 ( γ 03 + Γ / 2 ) ρ 03 * γ 13 ρ 13 * γ 23 ρ 23 * Γ 3 ρ 00 ) .
T = ( 1 0 0 0 0 exp ( i Δ ) 0 0 0 0 exp ( i Δ ) 0 0 0 0 exp ( i δ 3 ) ) ,
H = T 1 H T + i h ( t T 1 ) T = ( 0 Ω 1 Ω 2 Ω 3 Ω 1 * Δ 0 0 Ω 2 * 0 Δ 0 Ω 3 * 0 0 δ 3 ) .
τ ρ 00 = i ( i = 1 3 Ω ˜ i ρ 0 i * Ω ˜ i * ρ 0 i ) Γ ˜ ρ 00 , τ ρ k k = i ( Ω ˜ k ρ 01 * Ω ˜ k * ρ 01 ) + Γ ˜ k ρ 00 , where     k { 1 , 2 , 3 } , τ ρ 01 = i [ Ω ˜ 2 ρ 12 * + Ω ˜ 3 ρ 13 * + Ω ˜ 1 ( ρ 11 ρ 00 ) + Δ ˜ ρ 01 ] ( Γ ˜ / 2 + γ ˜ 01 ) ρ 01 , τ ρ 02 = i [ Ω ˜ 1 ρ 12 + Ω ˜ 3 ρ 23 * + Ω ˜ 2 ( ρ 22 ρ 00 ) + Δ ˜ ρ 02 ] ( Γ ˜ / 2 + γ ˜ 02 ) ρ 02 , τ ρ 03 = i [ Ω ˜ 1 ρ 13 + Ω ˜ 2 ρ 23 + Ω ˜ 3 ( ρ 33 ρ 00 ) + δ ˜ 3 ρ 03 ] ( Γ ˜ / 2 + γ ˜ 03 ) ρ 03 , τ ρ 12 = i [ Ω ˜ 2 ρ 01 * Ω ˜ 1 * ρ 02 ] γ ˜ 12 ρ 12 , τ ρ 13 = i [ Ω ˜ 3 ρ 01 * Ω ˜ 1 * ρ 03 + δ ˜ 13 ρ 13 ] γ ˜ 13 ρ 13 , τ ρ 23 = i [ Ω ˜ 3 ρ 02 * Ω ˜ 2 * ρ 03 + δ ˜ 13 ρ 23 ] γ ˜ 23 ρ 23 ,
| d b 1 = W 2 * | 1 W 1 * | 2 | W 1 | 2 + | W 2 | 2 , | d b 2 = W 1 | 1 + W 2 | 2 | W 1 | 2 + | W 2 | 2 , | d b 3 = W 3 | 3 | W 3 | , | d b 4 | 0 .
H ^ d b = ( 0 0 0 0 0 0 0 f ( t ) | W 1 | 2 + | W 2 | 2 0 0 δ 13 f ( t ) | W 3 | 0 f ( t ) | W 1 | 2 + | W 2 | 2 f ( t ) | W 3 | 2 t β + Δ ) .
| ψ ( t ) = k r k ( t ) b k ( t ) · exp ( t λ k ( t 1 ) d t 1 ) ,
H ^ d b b k = λ k b k .
λ ( λ 3 + λ 2 ( δ 13 2 β t Δ ) λ [ ( | W 1 | 2 + | W 2 | 2 + | W 3 | 2 ) f ( t ) 2 + δ 13 ( 2 β t + Δ ) ] ( | W 1 | 2 + | W 2 | 2 ) δ 13 f ( t ) 2 ) = 0 ,
b k = ( 0 f ( t ) | W 1 | 2 + | W 2 | 2 N λ k ( λ k [ Δ + 2 β t ] ) f ( t ) 2 ( | W 1 | 2 + | W 2 | 2 ) f ( t ) | W 3 | N λ k N ) ( T ) , k { 2 , 3 , 4 } .
N = f ( t ) 2 ( | W 1 | 2 + | W 2 | 2 ) + | λ k ( λ k [ Δ + 2 β t ] ) f ( t ) ( | W 1 | 2 + | W 2 | 2 ) f ( t ) | W 3 | | 2 + λ k 2 .
b k ( 3 ) b k ( 2 ) = λ k ( λ k [ Δ + 2 β t ] ) f ( t ) ( | W 1 | 2 + | W 2 | 2 ) f ( t ) 2 | W 3 | | W 1 | 2 + | W 2 | 2 , b k ( 4 ) b k ( 2 ) = λ k f ( t ) | W 1 | 2 + | W 2 | 2 .
0 | λ 4 | | δ 13 | .
| b 4 ( 4 ) b 4 ( 2 ) | | δ 13 | W 1 | 2 + | W 2 | 2 | .
| ψ ( ) = | 1 = W 2 | d b 1 + W 1 * | d b 2 | W 1 | 2 + | W 2 | 2 .
r 1 = W 2 | W 1 | 2 + | W 2 | 2 , r 2 = W 1 * | W 1 | 2 + | W 2 | 2 , r 3 = 0 , r 4 = 0.
| ψ ( t + ) = 1 | W 1 | 2 + | W 2 | 2 ( W 2 | d b 1 W 1 * | d b 3 ) = 1 | W 1 | 2 + | W 2 | 2 ( | W 2 | 2 | 1 W 2 W 1 * | 2 | W 1 | 2 + | W 2 | 2 W 1 * W 3 | W 3 | | 3 ) .
| ψ ( t + ) = W 3 * | W 3 | | d b 2 = W 3 * | W 3 | | W 1 | 2 + | W 2 | 2 ( W 1 | 1 + W 2 | 2 ) .
δ 13 > 0 :     ρ 00 fin = 0 , ρ 11 fin = | W 2 | 4 ( | W 1 | 2 + | W 2 | 2 ) 2 , ρ 22 fin = | W 1 | 2 | W 2 | 2 ( | W 1 | 2 + | W 2 | 2 ) 2 , ρ 33 fin = | W 1 | 2 | W 1 | 2 + | W 2 | 2 , ρ 12 fin = | W 2 | 2 W 1 W 2 * ( | W 1 | 2 + | W 2 | 2 ) 2 , ρ 13 fin = | W 2 | 2 W 1 W 3 * | W 3 | 2 ( | W 1 | 2 + | W 2 | 2 ) , ρ 23 fin = | W 1 | 2 W 2 W 3 * | W 3 | 2 ( | W 1 | 2 + | W 2 | 2 ) ;
δ 13 < 0 :     ρ 00 fin = 0 , ρ 11 fin = | W 1 | 2 | W 1 | 2 + | W 2 | 2 , ρ 22 fin = | W 2 | 2 | W 1 | 2 + | W 2 | 2 , ρ 33 fin = 0 , ρ 12 fin = W 1 W 2 * | W 1 | 2 + | W 2 | 2 , ρ 13 fin = 0 , ρ 23 fin = 0.
P ( Δ ˜ ) = m c 2 ( 2 π ) 3 k T ( f 0 τ p ) 2 exp [ m c 2 ( Δ ˜ ) 2 8 π 2 k T ( f 0 τ p ) 2 ] ,
ρ k l = P ( Δ ˜ ) ρ k l fin ( Δ ˜ ) d Δ ˜ .

Metrics