Abstract

We have studied parametric amplification in dispersion-engineered As2S3 waveguides achieving a highest gain of over +35dB using a pulsed pump. The gain is shown to involve an interaction between stimulated Raman scattering (SRS) and four-wave mixing (FWM). The gain was studied both experimentally and using computer modeling, which revealed that SRS contributes over +20dB to the combined gain and significantly modifies the dependence of the FWM the conversion efficiency as a function of propagation distance and dispersion. The implications for FWM using low-power CW beams are discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009).
    [CrossRef] [PubMed]
  2. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18, 17252–17261 (2010).
    [CrossRef] [PubMed]
  3. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
    [CrossRef] [PubMed]
  4. S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
    [CrossRef] [PubMed]
  5. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
    [CrossRef]
  6. M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18, 26686–26694 (2010).
    [CrossRef] [PubMed]
  7. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381(2008).
    [CrossRef] [PubMed]
  8. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
    [CrossRef] [PubMed]
  9. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm,” Opt. Express 18, 18866–18874 (2010).
    [CrossRef] [PubMed]
  10. K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
    [CrossRef]
  11. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
    [CrossRef]
  12. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga–Sb–S/Se,” Opt. Lett. 31, 1495–1497 (2006).
    [CrossRef] [PubMed]
  13. A. Prasad, C. Zha, R-P Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16, 2804–2815(2008).
    [CrossRef] [PubMed]
  14. P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994).
    [CrossRef]
  15. D.-Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354, 3179–3183 (2008).
    [CrossRef]
  16. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
    [CrossRef] [PubMed]
  17. Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
    [CrossRef]
  18. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104–8114 (2007).
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series (Academic, 2001).
  20. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
    [CrossRef] [PubMed]

2010 (4)

2009 (3)

2008 (4)

2007 (2)

2006 (2)

1999 (1)

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

1998 (1)

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

1996 (1)

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
[CrossRef]

1994 (1)

P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994).
[CrossRef]

Agrawal, G. P.

Beatty, R.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Boudebs, G.

Bulla, D.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
[CrossRef] [PubMed]

Bulla, D. A. P.

Cardinal, T.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Carlie, N.

Cerqua-Richardson, K. A.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Cherukulappurath, S.

Choi, D.-Y.

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm,” Opt. Express 18, 18866–18874 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18, 26686–26694 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18, 17252–17261 (2010).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381(2008).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

D.-Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354, 3179–3183 (2008).
[CrossRef]

Choi, D-Y.

Clausen, A. T.

Coen, S.

Eggleton, B. J.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18, 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18, 26686–26694 (2010).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381(2008).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
[CrossRef] [PubMed]

Fauchet, P. M.

Gai, X.

Galili, M.

Han, T.

Harvey, J. D.

Hsieh, A. S. Y.

Hu, H.

Humeau, A.

Jeppesen, P.

Jiang, Y. J.

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
[CrossRef]

Joshi, S.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Lamont, M. R.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

Lawrence, B.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Le Foulgoc, K.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Leonhardt, R.

Liisse, P.

P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994).
[CrossRef]

Lin, Q.

Liu, Y. L.

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
[CrossRef]

Luan, F.

Luther-Davies, B.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18, 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18, 26686–26694 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm,” Opt. Express 18, 18866–18874 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381(2008).
[CrossRef] [PubMed]

D.-Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354, 3179–3183 (2008).
[CrossRef]

A. Prasad, C. Zha, R-P Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16, 2804–2815(2008).
[CrossRef] [PubMed]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
[CrossRef] [PubMed]

Madden, S.

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm,” Opt. Express 18, 18866–18874 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381(2008).
[CrossRef] [PubMed]

A. Prasad, C. Zha, R-P Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16, 2804–2815(2008).
[CrossRef] [PubMed]

Madden, S. J.

Maden, S.

D.-Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354, 3179–3183 (2008).
[CrossRef]

McKinley, J. M.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Meneghini, C.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Mulvad, H. C.

Murdoch, S. G.

Oxenløwe, L. K.

Palushani, E.

Pelusi, M.

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Pelusi, M. D.

Petit, L.

Prasad, A.

Richardson, K.

Richardson, K. A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Rode, A.

Rode, A. V.

Schiile, J.

P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994).
[CrossRef]

Schröder, J.

Schulte, A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Shim, H.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Smith, A.

Stuwe, P.

P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994).
[CrossRef]

Ta’eed, V. G.

Unger, H.-G.

P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994).
[CrossRef]

Vanholsbeeck, F.

Viens, J. F.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

Villeneuve, A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Vo, T. D.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18, 17252–17261 (2010).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Wang, R.

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[CrossRef] [PubMed]

D.-Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354, 3179–3183 (2008).
[CrossRef]

Wang, R. P.

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
[CrossRef]

Wang, R-P

Wong, G. K. L.

Xu, J.

Zeng, L. Z.

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
[CrossRef]

Zha, C.

Zhang, J.

Zhu, Y.

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
[CrossRef]

J. Lightwave Technol. (1)

P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994).
[CrossRef]

J. Non-Cryst. Solids (2)

D.-Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354, 3179–3183 (2008).
[CrossRef]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999).
[CrossRef]

J. Raman Spectrosc. (1)

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996).
[CrossRef]

Nat. Photon. (1)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Opt. Express (12)

M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18, 26686–26694 (2010).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381(2008).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm,” Opt. Express 18, 18866–18874 (2010).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18, 17252–17261 (2010).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
[CrossRef] [PubMed]

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104–8114 (2007).
[CrossRef] [PubMed]

A. Prasad, C. Zha, R-P Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16, 2804–2815(2008).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Dispersion of fundamental TM mode as a function of wavelength and film thickness in the 4 μm wide waveguide. The blue curve indicates zero dispersion and the black line a wavelength of 1.55 μm . (b) Dispersion of the waveguide used in the experiments. The red curve is the dispersion of the fundamental TM mode, the green one is the TE mode, and the blue curve is the material dispersion.

Fig. 2
Fig. 2

Experimental arrangement used to investigate FWM using a high-power pulsed source and CW probe.

Fig. 3
Fig. 3

Experimental observations of amplification of white noise by a combination of FWM and Raman scattering for different propagation lengths. (a) TE mode; (b) TM mode.

Fig. 4
Fig. 4

Numerical simulations of amplification of white noise by FWM and SRS as a function of propagation length.

Fig. 5
Fig. 5

Experimental data demonstrating FWM between a 4 ps pulsed pump and CW tunable probe obtained using a 14 cm long waveguide compared with the results of simulations. (a) Output spectrum measured for different signal wavelengths. (b) Comparison of experimental and numerical results for a signal wavelength of 1612 nm . The blue curve is the experimental data, and the red is the numerical simulation. (c) Comparison of experimental and numerical results for a signal at 1631 nm .

Fig. 6
Fig. 6

(a) Numerical results demonstrating the relative contribution of SRS to the total combined gain for 14 and 21 cm long waveguides. The red and black lines are the combined gain including SRS for 21 and 14 cm , respectively. The blue and green lines represent the effects of FWM alone for 21 and 14 cm , respectively. (b) Real and imaginary parts of the Fourier transform of the Raman response function h ( R ) for As 2 S 3 .

Fig. 7
Fig. 7

(a) Calculated conversion efficiency for a waveguide with a dispersion of 15 ps / km / nm for different propagation lengths; (b) same as (a) but with a dispersion of 5 ps / km / nm (waveguide W a ); (c) same as (a) but with a dispersion of 1 ps / km / nm (waveguide W b ); (d) conversion efficiency versus propagation length at the Raman frequency for waveguides with various dispersion; (e) conversion efficiency versus propagation length at the Raman frequency for 1 ps / km / nm for different pump powers; (f) conversion efficiency the Raman frequency versus propagation length for 1 ps / km / nm as a function of waveguide loss using a pump power of 500 mW ; (g) pure FWM in W b ; (h) FWM including only the real part of the Raman response function in W b ; (i) FWM including only the imaginary part of the Raman response function in W b .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z A ( z , t ) = α 2 A + m 2 i m + 1 β m m ! m A t m + i ( γ + i α 2 2 A eff ) ( 1 + i ω 0 t ) ( A ( z , t ) R ( t ) | A ( z , t , t t ) | 2 d t | ) ,
4 γ P 0 4 γ P 0 f ( Re [ h R ( ω ) ] 1 ) < β 2 Δ ω 2 < 0 ,
A p z + i 2 β 2 2 A p t 2 + α 2 A p = i γ [ | A p | 2 + ( 2 + f R ( Re [ h ˜ R ( Ω ) ] 1 ) ) | A s | 2 ] A p γ Im [ h ˜ R ( Ω ) ] f R | A s | 2 A p ,
A s z + i 2 β 2 2 A s t 2 + α 2 A s = i γ [ | A s | 2 + ( 2 + f R ( Re [ h ˜ R ( Ω ) ] 1 ) ) | A p | 2 ] A s + i γ [ 1 + f R ( Re [ h ˜ R ( Ω ) ] 1 ) ] A p 2 A i * γ Im [ h ˜ R ( Ω ) ] f R | A p | 2 A s γ Im [ h ˜ R ( Ω ) ] f R A p 2 A i * .
η = | q γ P g sinh ( g L ) | 2 ,

Metrics