Abstract

We have synthesized a colloidal laser gain material that should possess many of the advantages of solid-state media without the main disadvantage of poor thermal performance. The colloid consists of Nd+3 doped phosphate glass nanoparticles suspended in nonanoic acid. The spectroscopic properties of our material were consistent with those of bulk Nd+3 doped materials and therefore suitable for laser development. The fluorescence peak of the 4F3/24I11/2 transition varied with particle size between 1047nm and 1057nm which represents a shift from the 1052nm line observed in bulk glass. The lifetime of the 4F3/2 metastable state was measured to vary between 20μs and 70μs depending upon the average particle radius compared to 98μs in bulk.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid State Laser Materials5th ed. (Springer, 1999), Ch 2.
  2. J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
    [CrossRef]
  3. J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.
  4. D. G. Goondo, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31, 1247–1249 (2006).
    [CrossRef]
  5. A. Heller, “A high-gain room-temperature liquid laser: trivalent neodymium in selenium oxychloride,” Appl. Phys. Lett. 9, 106–108 (1966).
    [CrossRef]
  6. W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
    [CrossRef]
  7. J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89, 8146–8152 (2001).
    [CrossRef]
  8. S. Ude and J. Fernandez de la Mora, “Hypersonic impaction with molecular mass standards,” Aerosol Sci. Technol. 34, 1245–1266 (2003).
    [CrossRef]
  9. D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, “Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements,” J. Fluoresc. 16, 793–807 (2006).
    [CrossRef] [PubMed]
  10. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
    [CrossRef]
  11. J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
    [CrossRef]
  12. B. Bunker, G. Arnold, and J. Wilder, “Phosphate glass dissolution in aqueous solutions,” J. Non-Cryst. Solids 64, 291–316(1984).
    [CrossRef]
  13. L. D. Merkel and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
    [CrossRef]
  14. Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys. 64, 41–44(2000).
    [CrossRef]
  15. C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 10, 5799 (1978).
    [CrossRef]
  16. R. C. Powell, Physics of Solid State Laser Materials (Springer-Verlag, 1998).
    [CrossRef]
  17. G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
    [CrossRef]
  18. P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85, 1061–1069(2002).
    [CrossRef]
  19. D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
    [CrossRef]
  20. K. Urman and J. Otaigbe, “Novel phosphate glass/polyamide 6 hybrids: miscibility, crystallization kinetics, and mechanical properties,” J. Polym. Sci., Part B: Polym. Phys. 44, 441–450(2005).
    [CrossRef]
  21. K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, “Spectroscopic properties of lanthanide chelates in perfluorinated plastics for optical applications,” J. Opt. Soc. Am. B 19, 1844–1848 (2002).
    [CrossRef]

2006 (2)

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, “Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements,” J. Fluoresc. 16, 793–807 (2006).
[CrossRef] [PubMed]

D. G. Goondo, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31, 1247–1249 (2006).
[CrossRef]

2005 (1)

K. Urman and J. Otaigbe, “Novel phosphate glass/polyamide 6 hybrids: miscibility, crystallization kinetics, and mechanical properties,” J. Polym. Sci., Part B: Polym. Phys. 44, 441–450(2005).
[CrossRef]

2004 (3)

D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

2003 (1)

S. Ude and J. Fernandez de la Mora, “Hypersonic impaction with molecular mass standards,” Aerosol Sci. Technol. 34, 1245–1266 (2003).
[CrossRef]

2002 (2)

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85, 1061–1069(2002).
[CrossRef]

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, “Spectroscopic properties of lanthanide chelates in perfluorinated plastics for optical applications,” J. Opt. Soc. Am. B 19, 1844–1848 (2002).
[CrossRef]

2001 (2)

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89, 8146–8152 (2001).
[CrossRef]

2000 (3)

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
[CrossRef]

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys. 64, 41–44(2000).
[CrossRef]

1999 (1)

W. Koechner, Solid State Laser Materials5th ed. (Springer, 1999), Ch 2.

1998 (1)

R. C. Powell, Physics of Solid State Laser Materials (Springer-Verlag, 1998).
[CrossRef]

1994 (1)

G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

1984 (1)

B. Bunker, G. Arnold, and J. Wilder, “Phosphate glass dissolution in aqueous solutions,” J. Non-Cryst. Solids 64, 291–316(1984).
[CrossRef]

1979 (1)

L. D. Merkel and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

1978 (1)

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 10, 5799 (1978).
[CrossRef]

1966 (1)

A. Heller, “A high-gain room-temperature liquid laser: trivalent neodymium in selenium oxychloride,” Appl. Phys. Lett. 9, 106–108 (1966).
[CrossRef]

Arnold, G.

B. Bunker, G. Arnold, and J. Wilder, “Phosphate glass dissolution in aqueous solutions,” J. Non-Cryst. Solids 64, 291–316(1984).
[CrossRef]

Asahara, Y.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
[CrossRef]

Becker, M. F.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89, 8146–8152 (2001).
[CrossRef]

Brecher, C.

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 10, 5799 (1978).
[CrossRef]

Brock, J. R.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

Bunker, B.

B. Bunker, G. Arnold, and J. Wilder, “Phosphate glass dissolution in aqueous solutions,” J. Non-Cryst. Solids 64, 291–316(1984).
[CrossRef]

Burdick, G. W.

G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Campbell, J. H.

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85, 1061–1069(2002).
[CrossRef]

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Chandler, D. E.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, “Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements,” J. Fluoresc. 16, 793–807 (2006).
[CrossRef] [PubMed]

Cheung, E. C.

Cimino, J. M.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Clegg, R. M.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, “Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements,” J. Fluoresc. 16, 793–807 (2006).
[CrossRef] [PubMed]

Coeckelenbergh, C. H.

D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
[CrossRef]

Ehrmann, P. R.

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85, 1061–1069(2002).
[CrossRef]

Endo, T.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

Epp, P.

Fernandez de la Mora, J.

S. Ude and J. Fernandez de la Mora, “Hypersonic impaction with molecular mass standards,” Aerosol Sci. Technol. 34, 1245–1266 (2003).
[CrossRef]

Ficini-Dorn, G. F.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Gao, L.

Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys. 64, 41–44(2000).
[CrossRef]

Glicksman, H. D.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

Goondo, D. G.

Gruber, J. B.

D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
[CrossRef]

Hayden, A. J.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Hayden, J. S.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Heiss, G. J.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, “Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements,” J. Fluoresc. 16, 793–807 (2006).
[CrossRef] [PubMed]

Heller, A.

A. Heller, “A high-gain room-temperature liquid laser: trivalent neodymium in selenium oxychloride,” Appl. Phys. Lett. 9, 106–108 (1966).
[CrossRef]

Henneke, D. E.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

Howland, D.

Injeyan, H.

Jayasankar, C. K.

G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Keto, J. W.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89, 8146–8152 (2001).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Materials5th ed. (Springer, 1999), Ch 2.

Koike, Y.

Komine, H.

Koumvakalis, A.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

Kuriki, K.

Lassovsky,

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

Lassovsky, S.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

Lee, J.

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89, 8146–8152 (2001).
[CrossRef]

Li, Q.

Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys. 64, 41–44(2000).
[CrossRef]

Long, W.

Majumdar, Z. K.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, “Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements,” J. Fluoresc. 16, 793–807 (2006).
[CrossRef] [PubMed]

Malyavanatham, G.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

Marker, A. J.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Masters, K.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

McClellan, M.

McNaught, S. J.

Merkel, L. D.

L. D. Merkel and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

Nichols, W. T.

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

Nishihara, S.

Nishizawa, Y.

Otaigbe, J.

K. Urman and J. Otaigbe, “Novel phosphate glass/polyamide 6 hybrids: miscibility, crystallization kinetics, and mechanical properties,” J. Polym. Sci., Part B: Polym. Phys. 44, 441–450(2005).
[CrossRef]

Powell, R. C.

R. C. Powell, Physics of Solid State Laser Materials (Springer-Verlag, 1998).
[CrossRef]

L. D. Merkel and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

Redmond, S.

Reid, M. F.

G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Richardson, F. S.

G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Riseberg, L. A.

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 10, 5799 (1978).
[CrossRef]

Sardar, D. K.

D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
[CrossRef]

Sayka, A.

D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
[CrossRef]

Shah, R.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

Simpson, R.

Smolley, M.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Sollee, J.

Suratwala, T. I.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Tagaya, A.

Takeuchi, k.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Thorne, A. J.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Thorsness, C. B.

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Ude, S.

S. Ude and J. Fernandez de la Mora, “Hypersonic impaction with molecular mass standards,” Aerosol Sci. Technol. 34, 1245–1266 (2003).
[CrossRef]

Urman, K.

K. Urman and J. Otaigbe, “Novel phosphate glass/polyamide 6 hybrids: miscibility, crystallization kinetics, and mechanical properties,” J. Polym. Sci., Part B: Polym. Phys. 44, 441–450(2005).
[CrossRef]

Vetrovec, J.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

Weber, M.

Weber, M. J.

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 10, 5799 (1978).
[CrossRef]

Weiss, S. B.

Widen, K.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

Wilder, J.

B. Bunker, G. Arnold, and J. Wilder, “Phosphate glass dissolution in aqueous solutions,” J. Non-Cryst. Solids 64, 291–316(1984).
[CrossRef]

Wooster, W.

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

Yamane, M.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
[CrossRef]

Yan, D.

Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys. 64, 41–44(2000).
[CrossRef]

Yow, R. M.

D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
[CrossRef]

Aerosol Sci. Technol. (1)

S. Ude and J. Fernandez de la Mora, “Hypersonic impaction with molecular mass standards,” Aerosol Sci. Technol. 34, 1245–1266 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

A. Heller, “A high-gain room-temperature liquid laser: trivalent neodymium in selenium oxychloride,” Appl. Phys. Lett. 9, 106–108 (1966).
[CrossRef]

W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78, 1128–1130 (2001).
[CrossRef]

J. Am. Ceram. Soc. (1)

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85, 1061–1069(2002).
[CrossRef]

J. Appl. Phys. (1)

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89, 8146–8152 (2001).
[CrossRef]

J. Fluoresc. (1)

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, “Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements,” J. Fluoresc. 16, 793–807 (2006).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (2)

J. H. Campbell, T. I. Suratwala, C. B. Thorsness, J. S. Hayden, A. J. Hayden, A. J. Thorne, J. M. Cimino, A. J. Marker, k. Takeuchi, M. Smolley, and G. F. Ficini-Dorn, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

B. Bunker, G. Arnold, and J. Wilder, “Phosphate glass dissolution in aqueous solutions,” J. Non-Cryst. Solids 64, 291–316(1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Polym. Sci., Part B: Polym. Phys. (1)

K. Urman and J. Otaigbe, “Novel phosphate glass/polyamide 6 hybrids: miscibility, crystallization kinetics, and mechanical properties,” J. Polym. Sci., Part B: Polym. Phys. 44, 441–450(2005).
[CrossRef]

Mater. Chem. Phys. (1)

Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys. 64, 41–44(2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 10, 5799 (1978).
[CrossRef]

L. D. Merkel and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Polym. Int. (1)

D. K. Sardar, R. M. Yow, C. H. Coeckelenbergh, A. Sayka, and J. B. Gruber, “Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA),” Polym. Int. 54, 412–417(2004).
[CrossRef]

Proc. SPIE (1)

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and S. Lassovsky, “Progress in the development of solid-state disk laser,” Proc. SPIE 5332, 235–243 (2004).
[CrossRef]

Other (4)

J. Vetrovec, R. Shah, T. Endo, R. Shah, T. Endo, A. Koumvakalis, K. Masters, W. Wooster, K. Widen, and Lassovsky, “Edge-pumped solid-state disk laser: initial test results,” presented at SSLDTR 2004, Albuquerque, New Mexico, USA, 8–10 June 2004, paper HPLS-8.

W. Koechner, Solid State Laser Materials5th ed. (Springer, 1999), Ch 2.

R. C. Powell, Physics of Solid State Laser Materials (Springer-Verlag, 1998).
[CrossRef]

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) TEM image of Nd + 3 doped NPs collected in nonanoic acid. (b) NP size distribution [count] versus particle diameter [nm] with a peak at 38 nm and an 8 nm standard deviation obtained by counting the particles in the image.

Fig. 2
Fig. 2

Fluorescence intensity [arb] versus wavelength [nm] of 8 nm diameter particles pumped at a range of wavelengths from 802 nm 808 nm with the bulk Nd + 3 doped glass spectrum as a reference.

Fig. 3
Fig. 3

Number of neodymium ions in a nanoparticle as a function of its radius.

Fig. 4
Fig. 4

Fluorescence intensity [arb] versus wavelength [nm] for a composite spectra (light dotted curve) of 2 nm spectra pumped at both 802 nm and 808 nm (dashed curve) added to the spectra from 15 nm particles also pumped at 802 nm and 808 nm (dash-dotted curve). The bulk (solid black curve) is included as a reference.

Fig. 5
Fig. 5

Absorption coefficient α OH [ cm 1 ] at 3000 cm 1  versus particle radius [nm]. Clear diamonds correspond to the measured value and squares correspond to a fit to the model constant/r.

Fig. 6
Fig. 6

(a) Peak fluorescence wavelength [nm] versus pump wavelength [nm] for a range of particle sizes. (b) Width of the fluorescence peak [nm] versus pump wavelength [nm] for a range of particle sizes.

Fig. 7
Fig. 7

Width of the fluorescence peak [nm] versus wavelength of the fluorescence peak [nm] for different sizes of Nd + 3 : glass NPs in solution.

Fig. 8
Fig. 8

The transmission at 1053 nm through a colloidal suspension of nanoparticles versus the index of refraction of the fluid. NP index of refraction: 1.5, optical pathlength: 10 cm , NP concentration: 5% solid (by volume), particle diameter: 20 nm .

Fig. 9
Fig. 9

The transmission at 1053 nm through a colloidal suspension of nanoparticles as a function of particle radius. Index mismatch: 20%, optical path-length: 10 cm , NP concentration: 5% (solid by volume).

Tables (1)

Tables Icon

Table 1 Average Particle Radius Determined from TEM Measurements of Particles Ablated in Different Gas Mixtures Versus Fluorescence Lifetime a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

F R ( t ) = 0 t I 0 [ 1 + cos ( t ) ] e t t τ d t = I 0 τ + I 0 τ 1 + ( ω τ ) 2 ( e t τ + cos ( ω t ) + ω τ sin ( ω t ) ) I 0 τ + I 0 τ cos ( ω t + tan 1 ( ω τ ) ) 1 + ( ω τ ) 2 , t τ .
H = H 0 + H S . O . + H C F , H 0 = 2 m i i 2 e 2 i Z i r i + e 2 i > j 1 r i j , H S . O . = i ξ ( r i ) l i · s i , H C F = j , m A j m * i r i l C j m ( r ^ i ) , C l m ( r ^ ) = ( 4 π 2 l + 1 ) 2 Y l m ( θ , ϕ ) , A l m = i Z i C l m ( R ^ i ) R i l + 1 ,
A a b = ( 8 π 2 e ) 2 χ 3 h λ 3 λ = 2 , 4 , 6 Ω λ 4 f n α a J a U ( λ ) 4 f n α b J b 2 J + 1 .
1 τ a r = b A a b .
Ω λ 1 R ( 2 { λ ± 1 } + 2 ) ,
A a b = ( 8 π 2 e ) 2 χ 3 h λ 3 c 2 a b Ω 2 + c 4 a b Ω 4 + c 6 a b Ω 6 2 J + 1 , A a b = c 0 ( c 2 a b Ω 2 + c 4 a b Ω 4 + c 6 a b Ω 6 ) .
1 τ 4 F 3 / 2 r c 0 ( c 4 4 I 9 / 2 Ω 4 + c 4 4 I 11 / 2 Ω 4 + c 6 4 I 9 / 2 Ω 6 + c 6 4 I 11 / 2 Ω 6 ) .
Δ Ω 6 Ω 6 bulk c t Δ τ 4 F 3 / 2 r N P ( b Ω 4 bulk Ω 6 bulk + 1 ) ( 1 b Ω 4 bulk 2 Ω 6 bulk Δ R R ) .
k OH = 1 τ quenched 1 τ rad , k OH = Q OH α OH , α OH = c [ OH ] .
V c f = A 20 r 2 + A 40 r 4 .
4 I 11 / 2 | r 4 | 4 I 11 / 2 = 0 , 4 F 3 / 2 | r 2 | 4 F 3 / 2 = 0 .
Δ V c f = 4 F 3 / 2 | δ H | 4 F 3 / 2 4 I 11 / 2 | δ H | 4 I 11 / 2 Δ V c f 4 F 3 / 2 | A 40 r 4 | 4 F 3 / 2 ( 4 ε ) + 4 I 11 / 2 | A 20 r 2 | 4 I 11 / 2 ( 2 ε ) ε Δ V c f 2 A 20 r 2 4 A 40 r 4 , where     ε = d r r .
σ ( r , ε r ) = 8 π 3 k 4 r 6 | ε r 1 ε r + 2 | 2 .

Metrics