Abstract

We propose a subwavelength metal slit with surrounding depth-modulated surface grating structures to realize directional beams in the terahertz regime. The surface gratings consist of two sets of grooves of different depths. The shallow grooves are designed to support the spoof surface plasmons, and the deep grooves are utilized to diffract the terahertz surface wave into free space. Theoretical analysis and numerical simulations based on the finite element method confirm that various beaming effects including splitting, on-axis beaming, and off-axis beaming can be realized by controlling the distributions of the deep grooves.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  2. L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
    [CrossRef]
  3. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009).
    [CrossRef] [PubMed]
  4. F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. 13, 01502 (2011).
    [CrossRef]
  5. A. Y. Nikitin, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A-Pure Appl. Opt. 11, 125702 (2009).
    [CrossRef]
  6. M. Guillaumee, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martin-Moreno, F. J. Garcia-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
    [CrossRef] [PubMed]
  7. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
    [CrossRef]
  8. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
    [CrossRef] [PubMed]
  9. F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
    [CrossRef] [PubMed]
  10. H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
    [CrossRef]
  11. Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008).
    [CrossRef] [PubMed]
  12. Y. Ueba, J. Takahara, and T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36, 909–911 (2011).
    [CrossRef] [PubMed]
  13. J. Lee, K. Lee, H. Park, G. Kang, D.-H. Yu, and K. Kim, “Tunable subwavelength focusing with dispersion-engineered metamaterials in the terahertz regime,” Opt. Lett. 35, 2254–2256(2010).
    [CrossRef] [PubMed]
  14. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  15. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  16. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
    [CrossRef]
  17. P. Y. Chen, Q. Q. Gan, F. J. Bartoli, and L. Zhu, “Spoof-surface-plasmon assisted light beaming in mid-infrared,” J. Opt. Soc. Am. B 27, 685–689 (2010).
    [CrossRef]
  18. J. Liu, L. Ding, K. Wang, and J. Yao, “A method to design transmission resonances through subwavelength apertures based on designed surface plasmons,” Opt. Express 17, 12714–12722(2009).
    [CrossRef] [PubMed]
  19. H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
    [CrossRef]
  20. Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14, 486–490 (2008).
    [CrossRef]

2011

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. 13, 01502 (2011).
[CrossRef]

Y. Ueba, J. Takahara, and T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36, 909–911 (2011).
[CrossRef] [PubMed]

2010

2009

2008

Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14, 486–490 (2008).
[CrossRef]

Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008).
[CrossRef] [PubMed]

2007

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

2006

2005

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

2004

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

1983

Alexander, J. R. W.

Bartoli, F. J.

P. Y. Chen, Q. Q. Gan, F. J. Bartoli, and L. Zhu, “Spoof-surface-plasmon assisted light beaming in mid-infrared,” J. Opt. Soc. Am. B 27, 685–689 (2010).
[CrossRef]

Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14, 486–490 (2008).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Chang, C. K.

Chang, Y. C.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Chen, P. Y.

Chen, Y. C.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
[CrossRef] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Ding, L.

Ding, Y. J. J.

Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14, 486–490 (2008).
[CrossRef]

Dong, X.

H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
[CrossRef]

Du, C.

H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
[CrossRef]

Du, C. L.

Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008).
[CrossRef] [PubMed]

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Dunbar, L. A.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Eckert, R.

Fu, Z.

Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14, 486–490 (2008).
[CrossRef]

Gan, Q. Q.

P. Y. Chen, Q. Q. Gan, F. J. Bartoli, and L. Zhu, “Spoof-surface-plasmon assisted light beaming in mid-infrared,” J. Opt. Soc. Am. B 27, 685–689 (2010).
[CrossRef]

Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14, 486–490 (2008).
[CrossRef]

Garcia-Vidal, F. J.

M. Guillaumee, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martin-Moreno, F. J. Garcia-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[CrossRef] [PubMed]

A. Y. Nikitin, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A-Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Guillaumee, M.

Hao, F.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. 13, 01502 (2011).
[CrossRef]

Hao, F. H.

Huang, K. T.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Kang, G.

Kim, H.

H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Kim, K.

Kim, S.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Klein, M. J. K.

Kuan, C. H.

Lee, B.

H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Lee, C. K.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
[CrossRef] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Lee, J.

Lee, K.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Liaw, J. W.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Lim, Y.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Lin, D. Z.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
[CrossRef] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Lin, M. W.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Liu, J.

Liu, J. M.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
[CrossRef] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Liu, Y. G.

Long, L. L.

Lu, Y.

H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
[CrossRef]

Luo, X. G.

Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008).
[CrossRef] [PubMed]

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Martin-Moreno, L.

M. Guillaumee, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martin-Moreno, F. J. Garcia-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[CrossRef] [PubMed]

A. Y. Nikitin, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A-Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Nagatsuma, T.

Nikitin, A. Y.

M. Guillaumee, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martin-Moreno, F. J. Garcia-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[CrossRef] [PubMed]

A. Y. Nikitin, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A-Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

Ordal, M. A.

Park, H.

Park, J.

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Shi, H.

H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
[CrossRef]

Shi, H. F.

Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008).
[CrossRef] [PubMed]

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Spassov, V.

Stanley, R. P.

Takahara, J.

Ueba, Y.

Wang, C. T.

Wang, J.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. 13, 01502 (2011).
[CrossRef]

F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
[CrossRef] [PubMed]

Wang, K.

Wang, R.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. 13, 01502 (2011).
[CrossRef]

F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
[CrossRef] [PubMed]

Ward, C. A.

Wei, X.

H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
[CrossRef]

Yang, D. L.

Yao, J.

Yeh, C. S.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
[CrossRef] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Yeh, J. T.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
[CrossRef] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Yu, D.-H.

Yu, L. B.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Zhao, Z.

H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
[CrossRef]

Zhu, L.

Appl. Opt.

Appl. Phys. Lett.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14, 486–490 (2008).
[CrossRef]

J. Opt.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. 13, 01502 (2011).
[CrossRef]

J. Opt. A-Pure Appl. Opt.

A. Y. Nikitin, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A-Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, and C. Du, “A new surface wave antenna-based spoof surface plasmon mechanism,” Microw. Opt. Technol. Lett. 52, 2179–2183 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71 (2005).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (1193 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the slit with depth-modulated groove structure.

Fig. 2
Fig. 2

Diffraction angle calculated by Eqs. (1, 2). Only the first diffraction order is taken into consideration. The solid vertical lines located at 0.767, 0.825, and 0.879 THz indicate the frequencies at which on-axis beaming effects occur for N L ( = N R ) equal 6, 5, and 4, respectively. The dashed vertical lines located at 0.835 THz indicate the frequency at which off-axis beaming effects occur for ( N L , N R ) equal (6, 4), respectively.

Fig. 3
Fig. 3

2D distributions of the field intensities ( | E | 2 ) (d–f) and the corresponding far-field radiation patterns (a–c). Only the right side of the slit is modulated by DG arrays, N R = 4 . The frequencies of the incident light for (d–f) are 0.795, 0.883, and 0.887 THz , respectively.

Fig. 4
Fig. 4

2D distributions of the field intensities ( | E | 2 ). Both sides of the slit are modulated by DGs with the same period, N L = N R = 4 , other parameters used in the simulation are the same as those used in Fig. 3.

Fig. 5
Fig. 5

2D distributions of the field intensities ( | E | 2 ) for three different DG periods. The parameter N L ( = N R ) for (a), (b), and (c) are equal to 5, 6, and 7, respectively. The incident frequency for (a), (b), and (c) are 0.845, 0.79, and 0.74 THz , respectively. Other parameters used in the simulation are the same as those used in Fig. 3.

Fig. 6
Fig. 6

2D distributions of the field intensities ( | E | 2 ) (e–f) and the corresponding far-field radiation patterns (a–c). (d): Only the right side is modulated by DGs with period N R = 4 . (e): Only the left side is modulated by DGs with period N L = 6 . (f): Left and right sides are modulated by DGs with different periods: N L = 6 , N R = 4 (Media 1). All the incident frequencies are 0.835 THz .

Fig. 7
Fig. 7

The circular markers are the simulated far-field intensity of the off-axis beam at 20° for different n L in the range of 1 to 12 by 2D FEM. The parameters used in the simulation are the same as those used in Fig. 6f except n L . The dashed curve is calculated by Eq. (5).

Tables (1)

Tables Icon

Table 1 Frequencies (THz) at Which n-axis Beaming Effects Appear for Different DG Periods

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k sp = k 0 1 + a 2 d 2 tan 2 ( k 0 h ) ,
{ k sp k g L = k sp m L N L 2 π d = k 0 sin θ L ( left ) k sp k g R = k sp m R N R 2 π d = k 0 sin θ R ( right ) ,
sin θ = λ 0 2 d ( m L N L m R N R ) .
Δ ϕ = k sp ( n L n R ) d + k 0 ( n L + n R ) d sin θ .
I far = I far L + I far R + 2 I far L I far R cos ( Δ ϕ ) ,
m l n L N l m r n R N r = s .

Metrics