Abstract

We charted multiple surface-plasmon-polariton (SPP)-wave modes at the planar interface between a metal and a chiral sculptured thin film (STF) in terms of the period, vapor flux angle, and orientation angle of the latter material. Two distinct scenarios were considered: one based on a canonical boundary-value problem involving half-spaces filled with the metal and the chiral STF and another based upon a modified Kretschmann configuration for ease of implementation. Calculations using empirical data for the constitutive relations of both partnering materials show that the number and nature of the SPP-wave modes are highly dependent on all three parameters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  2. J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
    [CrossRef]
  3. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
    [CrossRef]
  4. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135–2136 (1968).
  5. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  6. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
    [CrossRef]
  7. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
    [CrossRef]
  8. J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. Lond. A 465, 87–107 (2009).
    [CrossRef]
  9. J. A. Polo, Jr., and A. Lakhtakia, “Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material,” J. Opt. Soc. Am. A 26, 1696–1703 (2009).
    [CrossRef]
  10. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506(2009).
    [CrossRef]
  11. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138(2009).
    [CrossRef]
  12. T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
    [CrossRef]
  13. J. A. Polo, Jr., and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
    [CrossRef]
  14. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [CrossRef]
  15. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978).
    [CrossRef]
  16. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
    [CrossRef]
  17. M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
    [CrossRef]
  18. M. Faryad, H. Maab, and A. Lakhtakia, “Rugate-filter-guided propagation of multiple Fano waves,” J. Opt. 13, 075101(2011).
    [CrossRef]
  19. T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J., doi:10.1109/JSEN.2010.2067448 (to be published).
    [CrossRef]
  20. R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
    [CrossRef]
  21. R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
    [CrossRef]
  22. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
    [CrossRef]
  23. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
    [CrossRef]
  24. I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  25. A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291–297 (2007).
    [CrossRef]
  26. A. Lakhtakia and J. B. Geddes III, “Thin-film metamaterials called sculptured thin films,” in Trends in Nanophysics, A.Aldea and V.Bârsan, eds. (Springer, 2010), pp. 59–71.
    [CrossRef]
  27. A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
    [CrossRef]
  28. M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A , 84, 033852 (2011).
    [CrossRef]
  29. I. Dolev, M. Volodarsky, G. Porat, and A. Arie, “Multiple coupling of surface plasmons in quasiperiodic gratings,” Opt. Lett. 36, 1584–1586 (2011).
    [CrossRef] [PubMed]

2011 (4)

J. A. Polo, Jr., and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

M. Faryad, H. Maab, and A. Lakhtakia, “Rugate-filter-guided propagation of multiple Fano waves,” J. Opt. 13, 075101(2011).
[CrossRef]

M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A , 84, 033852 (2011).
[CrossRef]

I. Dolev, M. Volodarsky, G. Porat, and A. Arie, “Multiple coupling of surface plasmons in quasiperiodic gratings,” Opt. Lett. 36, 1584–1586 (2011).
[CrossRef] [PubMed]

2010 (4)

A. Lakhtakia and J. B. Geddes III, “Thin-film metamaterials called sculptured thin films,” in Trends in Nanophysics, A.Aldea and V.Bârsan, eds. (Springer, 2010), pp. 59–71.
[CrossRef]

A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
[CrossRef]

M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
[CrossRef]

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

2009 (5)

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. Lond. A 465, 87–107 (2009).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138(2009).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material,” J. Opt. Soc. Am. A 26, 1696–1703 (2009).
[CrossRef]

2008 (3)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[CrossRef]

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[CrossRef]

2007 (1)

A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291–297 (2007).
[CrossRef]

2006 (1)

J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
[CrossRef]

2005 (1)

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

2000 (1)

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1998 (1)

1996 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978).
[CrossRef]

1977 (1)

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

1959 (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Arie, A.

Brett, M. J.

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978).
[CrossRef]

Devender,

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138(2009).
[CrossRef]

Dolev, I.

Dushkina, N.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Faryad, M.

M. Faryad, H. Maab, and A. Lakhtakia, “Rugate-filter-guided propagation of multiple Fano waves,” J. Opt. 13, 075101(2011).
[CrossRef]

M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A , 84, 033852 (2011).
[CrossRef]

M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
[CrossRef]

Freeman, W. L.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Geddes, J. B.

A. Lakhtakia and J. B. Geddes III, “Thin-film metamaterials called sculptured thin films,” in Trends in Nanophysics, A.Aldea and V.Bârsan, eds. (Springer, 2010), pp. 59–71.
[CrossRef]

Gilani, T. H.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Hazel, J.

Hodgkinson, I. J.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Hong, C.-S.

Jen, Y.-J.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

Kowal, J.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135–2136 (1968).

Lakhtakia, A.

M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A , 84, 033852 (2011).
[CrossRef]

M. Faryad, H. Maab, and A. Lakhtakia, “Rugate-filter-guided propagation of multiple Fano waves,” J. Opt. 13, 075101(2011).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
[CrossRef]

A. Lakhtakia and J. B. Geddes III, “Thin-film metamaterials called sculptured thin films,” in Trends in Nanophysics, A.Aldea and V.Bârsan, eds. (Springer, 2010), pp. 59–71.
[CrossRef]

M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. Lond. A 465, 87–107 (2009).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138(2009).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material,” J. Opt. Soc. Am. A 26, 1696–1703 (2009).
[CrossRef]

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[CrossRef]

A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291–297 (2007).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J., doi:10.1109/JSEN.2010.2067448 (to be published).
[CrossRef]

Lin, C.-F.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

Maab, H.

M. Faryad, H. Maab, and A. Lakhtakia, “Rugate-filter-guided propagation of multiple Fano waves,” J. Opt. 13, 075101(2011).
[CrossRef]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J., doi:10.1109/JSEN.2010.2067448 (to be published).
[CrossRef]

Messier, R.

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Motyka, M. A.

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[CrossRef]

Numan, M. Z.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Polo, J. A.

J. A. Polo, Jr., and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material,” J. Opt. Soc. Am. A 26, 1696–1703 (2009).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. Lond. A 465, 87–107 (2009).
[CrossRef]

Porat, G.

Pulsifer, D. P.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138(2009).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135–2136 (1968).

Robbie, K.

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

Sunal, P. D.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Talwar, D. N.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Venugopal, V. C.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Volodarsky, M.

Wu, Q. H.

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

Young, N. O.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Zourob, M.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978).
[CrossRef]

Electromagnetics (1)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Electron. Lett. (1)

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138(2009).
[CrossRef]

J. Nanophoton. (4)

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[CrossRef]

J. Opt. (1)

M. Faryad, H. Maab, and A. Lakhtakia, “Rugate-filter-guided propagation of multiple Fano waves,” J. Opt. 13, 075101(2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Laser Photon. Rev. (1)

J. A. Polo, Jr., and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

Nature (2)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

Opt. Commun. (1)

A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291–297 (2007).
[CrossRef]

Opt. Eng. (1)

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
[CrossRef]

Phys. Rev. A (1)

M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A , 84, 033852 (2011).
[CrossRef]

Proc. R. Soc. Lond. A (1)

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. Lond. A 465, 87–107 (2009).
[CrossRef]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other (4)

J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
[CrossRef]

A. Lakhtakia and J. B. Geddes III, “Thin-film metamaterials called sculptured thin films,” in Trends in Nanophysics, A.Aldea and V.Bârsan, eds. (Springer, 2010), pp. 59–71.
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J., doi:10.1109/JSEN.2010.2067448 (to be published).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Schematic illustration of the formation of helical nanowires when a collimated vapor flux is incident on a rotating substrate in a vacuum chamber. (b) Cross-sectional scanning electron microscope image of a chiral STF made of magnesium fluoride.

Fig. 2
Fig. 2

Schematic illustration of the modified Kretschmann configuration.

Fig. 3
Fig. 3

Re ( κ ) / k o versus γ for Branches 1, 2, and 3 of the SPP-wave modes guided by the interface of an aluminum thin film and a chiral STF made of titanium oxide in the canonical boundary-value problem, when Ω = 150 nm for χ v { 5 ° , 15 ° , 25 ° , 35 ° , 45 ° , 60 ° } .

Fig. 4
Fig. 4

Same as Fig. 3, except that Im ( κ ) / k o is plotted versus γ.

Fig. 5
Fig. 5

Same as Fig. 3, except that Ω = 200 nm .

Fig. 6
Fig. 6

Same as Fig. 4, except that Ω = 200 nm .

Fig. 7
Fig. 7

Absorptances A p (solid blue curve) and A s (dashed green curve) versus θ inc , for χ v { 5 ° , 15 ° , 25 ° , 35 ° , 45 ° , 60 ° } , N per { 2 , 3 } , Ω = 150 nm , and γ = 0 ° .

Fig. 8
Fig. 8

Same as Fig. 7, except that χ v = 5 ° and N per { 2 , 3 , 4 , 5 , 7 , 9 } .

Fig. 9
Fig. 9

Same as Fig. 7, except that χ v = 60 ° , N per { 2 , 3 , 5 , 7 , 9 , 15 } , and γ = 60 ° .

Fig. 10
Fig. 10

Same as Fig. 7, except that Ω = 200 nm .

Fig. 11
Fig. 11

Angles θ inc = θ ˜ inc ( 1 ) (solid blue curve) and θ ˜ inc ( 2 ) (dashed red curve) (deg), and | d 2 A p / d θ inc 2 | (per deg per deg) evaluated at θ inc = θ ˜ inc ( 1 ) (solid blue curve) and θ ˜ inc ( 2 ) (dashed red curve), plotted versus χ v (deg) for Ω = 150 nm , N per = 2 and γ = 0 ° .

Fig. 12
Fig. 12

Same as Fig. 11, except that Ω = 200 nm and θ inc = θ ˜ inc ( 1 ) (solid blue curve), θ ˜ inc ( 2 ) (dashed red curve), and θ ˜ inc ( 3 ) (dashed–dotted yellow curve).

Fig. 13
Fig. 13

Angles θ inc = θ ˜ inc ( 1 ) (solid blue curve) and θ ˜ inc ( 2 ) (dashed red curve) (deg), and | d 2 A p / d θ inc 2 | (per deg per deg ) evaluated at θ inc = θ ˜ inc ( 1 ) (solid blue curve) and θ ˜ inc ( 2 ) (dashed red curve), plotted versus γ (deg) for Ω = 150 nm , N per = 2 and χ v { 15 ° , 35 ° , 60 ° } .

Fig. 14
Fig. 14

Same as Fig. 13, except that Ω = 200 nm and θ inc = θ ˜ inc ( 1 ) (solid blue curve), θ ˜ inc ( 2 ) (dashed red curve) and θ ˜ inc ( 3 ) (dashed–dotted yellow curve).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϵ ̲ ̲ stf ( ζ ) = S ̲ ̲ z ( ζ ) S ̲ ̲ y ( χ ) ϵ ̲ ̲ ref S ̲ ̲ y 1 ( χ ) S ̲ ̲ z 1 ( ζ ) , 0 < z < L stf ,
ϵ ̲ ̲ ref = ϵ a u ̲ z u ̲ z + ϵ b u ̲ x u ̲ x + ϵ c u ̲ y u ̲ y
S ̲ ̲ z ( ζ ) = ( u ̲ x u ̲ x + u ̲ y u ̲ y ) cos ζ + ( u ̲ y u ̲ x u ̲ x u ̲ y ) sin ζ + u ̲ z u ̲ z ,
S ̲ ̲ y ( χ ) = ( u ̲ x u ̲ x + u ̲ z u ̲ z ) cos χ + ( u ̲ z u ̲ x u ̲ x u ̲ z ) sin χ + u ̲ y u ̲ y ,
ϵ a = [ 1.0443 + 2.7394 ( χ v π / 2 ) 1.3697 ( χ v π / 2 ) 2 ] 2 ,
ϵ b = [ 1.6765 + 1.5649 ( χ v π / 2 ) 0.7825 ( χ v π / 2 ) 2 ] 2 ,
ϵ c = [ 1.3586 + 2.1109 ( χ v π / 2 ) 1.0554 ( χ v π / 2 ) 2 ] 2 ,
tan χ = 2.8818 tan χ v ,

Metrics