Abstract

We demonstrated an all-optical signal control technique, novel to our knowledge, based on pulse trapping and amplification by ultrashort soliton pulse in a birefringent fiber to implement three functions: amplification, reshaping, and retiming. The signal and control pulses trap each other and copropagate in the fiber. The signal pulse experiences Raman gain and soliton effect by an ultrashort control pulse. The characteristics were investigated both experimentally and numerically. The maximum gain obtained was 28dB in a 140m long fiber. The output waveforms were 300fs, chirp-free, sech2-shaped, ultrashort pulses. Delays and advances within ±0.4ps in the initial signal were compensated for.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  3. S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).
  4. J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
    [CrossRef]
  5. M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, “Optical 40 Gb/s 3R regenerator with a combination of the SPM and XAM effects for all-optical networks,” J. Lightwave Technol. 24, 1142–1148 (2006).
    [CrossRef]
  6. S. Arahira and Y. Ogawa, “160 Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM,” IEEE Photon. Technol. Lett. 17, 992–994(2005).
    [CrossRef]
  7. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “All-optical pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating,” J. Lightwave Technol. 24, 357–364 (2006).
    [CrossRef]
  8. S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
    [CrossRef]
  9. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
    [CrossRef]
  10. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photon. 1, 653–657 (2007).
    [CrossRef]
  11. J. M. Dudley and J. R. Taylor, Supercontinuum Generation (Cambridge University, 2010).
    [CrossRef]
  12. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1160 (2002).
    [PubMed]
  13. N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
    [CrossRef]
  14. N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45, 1446–1455 (2009).
    [CrossRef]
  15. N. Nishizawa and T. Goto, “Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength,” Opt. Express 11, 359–365 (2003).
    [CrossRef] [PubMed]
  16. N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express 10, 256–261 (2002).
    [PubMed]
  17. E. Shiraki and N. Nishizawa, “Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers,” Opt. Express 18, 7323–7330 (2010).
    [CrossRef] [PubMed]
  18. N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express 13, 8128–8135 (2005).
    [CrossRef] [PubMed]
  19. E. Shiraki, N. Nishizawa, and K. Itoh,“Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers,” Opt. Express 18, 23070–23078 (2010).
    [CrossRef] [PubMed]
  20. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
    [CrossRef] [PubMed]

2010

2009

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45, 1446–1455 (2009).
[CrossRef]

2008

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

2007

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

2006

2005

N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express 13, 8128–8135 (2005).
[CrossRef] [PubMed]

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, “160 Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM,” IEEE Photon. Technol. Lett. 17, 992–994(2005).
[CrossRef]

2004

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

2003

2002

2001

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Arahira, S.

S. Arahira and Y. Ogawa, “160 Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM,” IEEE Photon. Technol. Lett. 17, 992–994(2005).
[CrossRef]

Berger, J.

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Boerner, C.

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Daikoku, M.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation (Cambridge University, 2010).
[CrossRef]

Ferber, S.

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Futami, F.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

Goto, T.

Hall, J. L.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Huettl, B.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

Ibsen, M.

Itoh, K.

E. Shiraki, N. Nishizawa, and K. Itoh,“Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers,” Opt. Express 18, 23070–23078 (2010).
[CrossRef] [PubMed]

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

Kapteyn, H. C.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Kikuchi, K.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
[CrossRef]

Langhorst, C. S.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Ludwig, R.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Ma, L. S.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Murnane, M. M.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Nishizawa, N.

E. Shiraki, N. Nishizawa, and K. Itoh,“Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers,” Opt. Express 18, 23070–23078 (2010).
[CrossRef] [PubMed]

E. Shiraki and N. Nishizawa, “Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers,” Opt. Express 18, 7323–7330 (2010).
[CrossRef] [PubMed]

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45, 1446–1455 (2009).
[CrossRef]

N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express 13, 8128–8135 (2005).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength,” Opt. Express 11, 359–365 (2003).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1160 (2002).
[PubMed]

N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express 10, 256–261 (2002).
[PubMed]

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
[CrossRef]

Ogawa, Y.

S. Arahira and Y. Ogawa, “160 Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM,” IEEE Photon. Technol. Lett. 17, 992–994(2005).
[CrossRef]

Okabe, R.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

Otani, T.

Ozeki, Y.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
[CrossRef]

Parmigiani, F.

Petropoulos, P.

Richardson, D. J.

Schubert, C.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Shelton, R. K.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Shiraki, E.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

Suzuki, J.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
[CrossRef]

Taira, K.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
[CrossRef]

Tanaka, H.

Tanemura, T.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
[CrossRef]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation (Cambridge University, 2010).
[CrossRef]

Ukai, Y.

Watanabe, S.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Weber, H. G.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

Ye, J.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Yoshikane, N.

Appl. Phys. Express

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

IEEE J. Quantum Electron.

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45, 1446–1455 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. S. Langhorst, B. Huettl, C. Schubert, and H. G. Weber, “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14, 674–680(2008).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, “160 Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM,” IEEE Photon. Technol. Lett. 17, 992–994(2005).
[CrossRef]

IEICE Trans. Electron.

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. S. Langhorst, J. Berger, and H. G. Weber, “Ultrafast all-optical 3R-regeneration,” IEICE Trans. Electron. E87-C, 1114–1118 (2004).

J. Lightwave Technol.

Nat. Photon.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Science

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Other

J. M. Dudley and J. R. Taylor, Supercontinuum Generation (Cambridge University, 2010).
[CrossRef]

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of all-optical signal regeneration using pulse trapping. (a) Group-velocity dispersion for slow and fast axes of PMF. Signal and control pulses (orthogonally polarized, two-color, twin pulses) satisfy the group-velocity matching condition in PMF. (b) Evolution of signal and control pulses in pulse trapping along the PMF.

Fig. 2
Fig. 2

Experimental setup of signal regenerator using pulse trapping. ISO, optical isolator; HWP, half-wave plate; QWP, quarter-wave plate; CL, collimating lens; CP-EDFA, chirped-pulse Er-doped fiber amplifier; LMA-PCF, large-mode-area photonic crystal fiber; WC-PMF, wavelength-conversion polarization-maintaining fiber; PBS, polarizing beam splitter; CM, corner mirror; LB-PMF, low- birefringence polarization-maintaining fiber; PIN, p-i-n photodiode.

Fig. 3
Fig. 3

Representative spectra at the output of the LB-PMF for control pulse and signal pulse input energies E ci = 348 pJ (energy of effective control pulse, E ceff = 340 pJ ) and E si = 2.4 pJ (a) when there was no interaction between the two pulses and (b) when pulse trapping occurred. The blue and red solid lines show the spectra along the slow and fast axes of the LB-PMF, respectively. The dashed lines represent sech 2 -shaped fits.

Fig. 4
Fig. 4

Gain characteristics as a function of (a) energy of effective control pulse E ceff for no initial signal delay ( Δ T in 0 ) and (b)  Δ T in for E ceff = 340 pJ . The solid circles, squares, and triangles show the experimental results for the signal pulse input energies E si = 0.2 , 2.4, and 6 pJ , respectively. The solid lines are the corresponding numerical results. (c) SHG signal of the signal pulse train and (d) the corresponding pulse waveform for E si = 2.4 pJ .

Fig. 5
Fig. 5

Numerical results of gain characteristics as a function of initial signal delay Δ T in for the temporal width of the input signal pulse, Δ t si , of 100, 123, 200, and 300 fs . The signal pulse energy E si is fixed at 0.2 pJ . The solid circles show the experimental results, which correspond to those in Fig. 4b. The inset shows the temporal waveform of the input signal pulse.

Fig. 6
Fig. 6

(a) Experimental and (b) theoretical autocorrelation traces of trapped signal pulse alone and a combination of two-color twin pulses (control and signal pulses) for E ceff = 340 pJ and E si = 0.2 pJ .

Fig. 7
Fig. 7

(a) Representative spectrum at BBO crystal output, where (i) and (iii) are SHG signals produced by control and signal pulses, respectively, and (ii) is an SFG signal produced by the twin pulses. (b) Intensity variation of SFG signal as a function of initial signal delay Δ T in for E ceff = 340 pJ . The circles, squares, and triangles show the experimental results for the signal pulse input energies E si = 0.2 , 2.4, and 6 pJ , respectively. The solid lines show the corresponding numerical results.

Fig. 8
Fig. 8

Pulse parameters of trapped signal pulses at fiber output. (a) Temporal width Δ t , (b) frequency bandwidth Δ f , and (c) time–frequency bandwidth product Δ t · Δ f as a function of initial signal delay Δ T in for E ceff = 340 pJ . The circles, squares, and triangles show the experimental results for the signal pulse input energies E si = 0.2 , 2.4, and 6 pJ , respectively. The solid lines are the corresponding numerical results.

Fig. 9
Fig. 9

Numerical results of the signal regeneration in ultrafast regime of approximate terahertz. (a) Input pulse trains. The repetition rates of the signal and control pulses are 1.92 THz and 640 GHz , respectively. The signal pulse overlapped with the control pulse is the target for pulse trapping. (b) Output signal pulse train in the cases without target (“0”) and with target (“1”) with the initial signal delay Δ T in of 0 and ± 122 fs . (c) Output pulse peak power of the trapped signal pulse as a function of the repetition rate of the signal pulse train for a variety of initial signal delay Δ T in . The power for the “0” case is the off level (solid line). If the signal pulses have the peak power above the broken line, the > 20 dB ER is obtained.

Metrics