Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[CrossRef]

P. Pawliuk and M. Yedlin, “Gaussian beam scattering from a dielectric cylinder, including the evanescent region,” J. Opt. Soc. Am. A 26, 2558–2566 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]
[PubMed]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–651 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[CrossRef]

G. Gouesbet, “Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation,” Part. Part. Syst. Charact. 12, 242–256 (1995).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

E. Zimmermann, R. Dändliker, N. Souli, and B. Krattiger, “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A 12, 398–403 (1995).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).

[CrossRef]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472–8473 (1995).

[CrossRef]
[PubMed]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[CrossRef]
[PubMed]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Applic. 3, 1–15(1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[CrossRef]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[CrossRef]

J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166 (1999).

[CrossRef]

J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).

[CrossRef]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472–8473 (1995).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[CrossRef]

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

L. Mees, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]
[PubMed]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, “Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation,” Part. Part. Syst. Charact. 12, 242–256 (1995).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]
[PubMed]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[CrossRef]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

L. Mees, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]
[PubMed]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[CrossRef]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[CrossRef]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Applic. 3, 1–15(1989).

[CrossRef]

R. F. Harrington, Field Computation by Moment Methods(Macmillan, 1968).

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–651 (1997).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[CrossRef]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[CrossRef]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[CrossRef]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).

[CrossRef]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472–8473 (1995).

[CrossRef]
[PubMed]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[CrossRef]
[PubMed]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]
[PubMed]

L. Mees, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[CrossRef]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[CrossRef]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Applic. 3, 1–15(1989).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166 (1999).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–651 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

E. Zimmermann, R. Dändliker, N. Souli, and B. Krattiger, “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A 12, 398–403 (1995).

[CrossRef]

J. P. He, A. Karlsson, J. Swartling, and S. A. Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

P. Pawliuk and M. Yedlin, “Gaussian beam scattering from a dielectric cylinder, including the evanescent region,” J. Opt. Soc. Am. A 26, 2558–2566 (2009).

[CrossRef]

G. Gouesbet, “Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation,” Part. Part. Syst. Charact. 12, 242–256 (1995).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[CrossRef]

R. F. Harrington, Field Computation by Moment Methods(Macmillan, 1968).