Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[Crossref]

P. Pawliuk and M. Yedlin, “Gaussian beam scattering from a dielectric cylinder, including the evanescent region,” J. Opt. Soc. Am. A 26, 2558–2566 (2009).

[Crossref]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[Crossref]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[Crossref]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[Crossref]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[Crossref]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[Crossref]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[Crossref]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–651 (1997).

[Crossref]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[Crossref]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[Crossref]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[Crossref]

G. Gouesbet, “Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation,” Part. Part. Syst. Charact. 12, 242–256 (1995).

[Crossref]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[Crossref]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[Crossref]
[PubMed]

E. Zimmermann, R. Dändliker, N. Souli, and B. Krattiger, “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A 12, 398–403 (1995).

[Crossref]

J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).

[Crossref]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472–8473 (1995).

[Crossref]
[PubMed]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[Crossref]
[PubMed]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[Crossref]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Applic. 3, 1–15(1989).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[Crossref]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[Crossref]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[Crossref]
[PubMed]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[Crossref]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[Crossref]

R. F. Harrington, Field Computation by Moment Methods(Macmillan, 1968).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[Crossref]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[Crossref]

J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166 (1999).

[Crossref]

J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).

[Crossref]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472–8473 (1995).

[Crossref]
[PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[Crossref]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[Crossref]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[Crossref]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[Crossref]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[Crossref]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[Crossref]

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[Crossref]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[Crossref]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[Crossref]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[Crossref]
[PubMed]

L. Mees, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[Crossref]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[Crossref]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[Crossref]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[Crossref]
[PubMed]

G. Gouesbet, “Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation,” Part. Part. Syst. Charact. 12, 242–256 (1995).

[Crossref]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[Crossref]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[Crossref]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[Crossref]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[Crossref]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[Crossref]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[Crossref]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[Crossref]
[PubMed]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[Crossref]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[Crossref]
[PubMed]

L. Mees, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[Crossref]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[Crossref]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[Crossref]
[PubMed]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[Crossref]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[Crossref]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[Crossref]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[Crossref]

H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008).

[Crossref]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[Crossref]
[PubMed]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[Crossref]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[Crossref]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Applic. 3, 1–15(1989).

[Crossref]

R. F. Harrington, Field Computation by Moment Methods(Macmillan, 1968).

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[Crossref]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[Crossref]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[Crossref]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–651 (1997).

[Crossref]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[Crossref]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[Crossref]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[Crossref]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[Crossref]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[Crossref]
[PubMed]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[Crossref]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[Crossref]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[Crossref]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[Crossref]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[Crossref]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[Crossref]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[Crossref]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[Crossref]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[Crossref]

G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[Crossref]
[PubMed]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995).

[Crossref]
[PubMed]

J. P. Chevaillier, J. Fabre, G. Gréhan, and G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990).

[Crossref]
[PubMed]

L. Mees, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[Crossref]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[Crossref]
[PubMed]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[Crossref]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[Crossref]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).

[Crossref]
[PubMed]

J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472–8473 (1995).

[Crossref]
[PubMed]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[Crossref]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Ant. Propag. 30, 409–418 (1982).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[Crossref]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[Crossref]

A. I. Mackenzie, S. M. Rao, and M. E. Baginski, “Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments,” IEEE Trans. Antennas Propag. 57, 2076–2073 (2009).

[Crossref]

Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001).

[Crossref]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639(1988).

[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[Crossref]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[Crossref]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Applic. 3, 1–15(1989).

[Crossref]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Applic. 25, 211–222 (2011).

[Crossref]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[Crossref]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[Crossref]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[Crossref]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[Crossref]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[Crossref]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[Crossref]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–651 (1997).

[Crossref]

F. Xu, K. F. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007).

[Crossref]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[Crossref]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[Crossref]

P. Pawliuk and M. Yedlin, “Gaussian beam scattering from a dielectric cylinder, including the evanescent region,” J. Opt. Soc. Am. A 26, 2558–2566 (2009).

[Crossref]

E. Zimmermann, R. Dändliker, N. Souli, and B. Krattiger, “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A 12, 398–403 (1995).

[Crossref]

J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166 (1999).

[Crossref]

J. P. He, A. Karlsson, J. Swartling, and S. A. Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004).

[Crossref]

G. Gouesbet, “Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation,” Part. Part. Syst. Charact. 12, 242–256 (1995).

[Crossref]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[Crossref]

R. F. Harrington, Field Computation by Moment Methods(Macmillan, 1968).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

[Crossref]