Abstract

We propose a different kind of photonic quantum well structure made of photonic crystals containing negative-index materials, the features of which are investigated by the transfer matrix method. The proposed structure can effectively enlarge the resonant tunneling mode frequency range by at least 1.4GHz compared with the one reported previously. Its resonant tunneling mode is still insensitive to the incident angle and polarization as the ordinary photonic quantum well containing negative-index material. The number of the resonant tunneling mode can also be tuned by changing the period number of the constituent photonic crystals. Moreover, the structure with only one more photonic crystal than the ordinary one is relatively simple compared with the other structure, which may be used to enlarge the resonant tunneling mode frequency range, which can simplify fabrication and reduce energy loss of passing light in practice. These characteristics can improve it as an omnidirectional and multichannel filter. The method to construct it can also be applied to a photonic double quantum well structure.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Esaki and R. Tus, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
    [CrossRef]
  2. J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084–2086 (1998).
    [CrossRef]
  3. H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
    [CrossRef]
  4. Y. Jiang, C. Niu, and D. L. Lin, “Resonance tunneling through photonic quantum wells,” Phys. Rev. B 59, 9981–9986 (1999).
    [CrossRef]
  5. A. Sharkawy, S. Shi, and D. W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002).
    [CrossRef] [PubMed]
  6. F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
    [CrossRef]
  7. Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519(2000).
    [CrossRef]
  8. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  10. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
    [CrossRef] [PubMed]
  11. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
    [CrossRef]
  12. M. Lin, Z. Ouyang, J. Xu, and G. Qiu, “Omnidirectional and multi-channel filtering by photonic quantum wells with negative-index materials,” Opt. Express 17, 5861–5866 (2009).
    [CrossRef] [PubMed]
  13. L. Wang, Z. Shen, B. Fan, and Z. Wang, “High transmittance of connected resonant modes,” Opt. Commun. 283, 2155–2159(2010).
    [CrossRef]
  14. Y. Xiang, X. Dai, S. Wen, and D. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604(2007).
    [CrossRef]
  15. C. J. Fu, Z. M. Zhang, and D. B. Tanner, “Energy transmission by photon tunneling in multilayer structures including negative index materials,” Trans. Am. Soc. Mech. Eng. 127, 1046–1052(2005).
    [CrossRef]
  16. C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
    [CrossRef]
  17. C. P. Yin, J. W. Dong, and H. Z. Wang, “Resonant modes and inter-well coupling in photonic quantum well with negative index materials,” Eur. Phys. J. B 67, 221–224 (2009).
    [CrossRef]
  18. J. D. Cox and M. R. Singh, “Resonant tunneling in photonic double quantum well heterostructures,” Nanoscale Res. Lett. 5, 484–488 (2010).
    [CrossRef] [PubMed]
  19. S. M. Sadeghi and W. Li, “Generation of bonding and antibonding photonic modes in laser-induced photonic double quantum wells,” Phys. Rev. B 81, 155317 (2010).
    [CrossRef]
  20. H. M. Fei, Y. K. Jiang, J. Q. Liang, and D. L. Lin, “Transmission spectra through a photonic double quantum well system,” Chin. Phys. B 18, 2377–2382 (2009).
    [CrossRef]

2010

L. Wang, Z. Shen, B. Fan, and Z. Wang, “High transmittance of connected resonant modes,” Opt. Commun. 283, 2155–2159(2010).
[CrossRef]

J. D. Cox and M. R. Singh, “Resonant tunneling in photonic double quantum well heterostructures,” Nanoscale Res. Lett. 5, 484–488 (2010).
[CrossRef] [PubMed]

S. M. Sadeghi and W. Li, “Generation of bonding and antibonding photonic modes in laser-induced photonic double quantum wells,” Phys. Rev. B 81, 155317 (2010).
[CrossRef]

2009

H. M. Fei, Y. K. Jiang, J. Q. Liang, and D. L. Lin, “Transmission spectra through a photonic double quantum well system,” Chin. Phys. B 18, 2377–2382 (2009).
[CrossRef]

C. P. Yin, J. W. Dong, and H. Z. Wang, “Resonant modes and inter-well coupling in photonic quantum well with negative index materials,” Eur. Phys. J. B 67, 221–224 (2009).
[CrossRef]

M. Lin, Z. Ouyang, J. Xu, and G. Qiu, “Omnidirectional and multi-channel filtering by photonic quantum wells with negative-index materials,” Opt. Express 17, 5861–5866 (2009).
[CrossRef] [PubMed]

2007

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

Y. Xiang, X. Dai, S. Wen, and D. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604(2007).
[CrossRef]

2005

C. J. Fu, Z. M. Zhang, and D. B. Tanner, “Energy transmission by photon tunneling in multilayer structures including negative index materials,” Trans. Am. Soc. Mech. Eng. 127, 1046–1052(2005).
[CrossRef]

2003

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[CrossRef]

2002

2000

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519(2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1999

Y. Jiang, C. Niu, and D. L. Lin, “Resonance tunneling through photonic quantum wells,” Phys. Rev. B 59, 9981–9986 (1999).
[CrossRef]

1998

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084–2086 (1998).
[CrossRef]

1996

H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
[CrossRef]

1970

L. Esaki and R. Tus, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Chan, C. T.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Chen, H.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[CrossRef]

Cox, J. D.

J. D. Cox and M. R. Singh, “Resonant tunneling in photonic double quantum well heterostructures,” Nanoscale Res. Lett. 5, 484–488 (2010).
[CrossRef] [PubMed]

Dai, X.

Y. Xiang, X. Dai, S. Wen, and D. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604(2007).
[CrossRef]

Dong, J. W.

C. P. Yin, J. W. Dong, and H. Z. Wang, “Resonant modes and inter-well coupling in photonic quantum well with negative index materials,” Eur. Phys. J. B 67, 221–224 (2009).
[CrossRef]

Esaki, L.

L. Esaki and R. Tus, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

Fan, B.

L. Wang, Z. Shen, B. Fan, and Z. Wang, “High transmittance of connected resonant modes,” Opt. Commun. 283, 2155–2159(2010).
[CrossRef]

Fan, D.

Y. Xiang, X. Dai, S. Wen, and D. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604(2007).
[CrossRef]

Fei, H. M.

H. M. Fei, Y. K. Jiang, J. Q. Liang, and D. L. Lin, “Transmission spectra through a photonic double quantum well system,” Chin. Phys. B 18, 2377–2382 (2009).
[CrossRef]

Fu, C. J.

C. J. Fu, Z. M. Zhang, and D. B. Tanner, “Energy transmission by photon tunneling in multilayer structures including negative index materials,” Trans. Am. Soc. Mech. Eng. 127, 1046–1052(2005).
[CrossRef]

Han, D.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

Jiang, H. T.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[CrossRef]

Jiang, Y.

Y. Jiang, C. Niu, and D. L. Lin, “Resonance tunneling through photonic quantum wells,” Phys. Rev. B 59, 9981–9986 (1999).
[CrossRef]

Jiang, Y. K.

H. M. Fei, Y. K. Jiang, J. Q. Liang, and D. L. Lin, “Transmission spectra through a photonic double quantum well system,” Chin. Phys. B 18, 2377–2382 (2009).
[CrossRef]

Jimba, Y.

H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
[CrossRef]

Kim, C. Y.

H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
[CrossRef]

Li, H. Q.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[CrossRef]

Li, J.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Li, W.

S. M. Sadeghi and W. Li, “Generation of bonding and antibonding photonic modes in laser-induced photonic double quantum wells,” Phys. Rev. B 81, 155317 (2010).
[CrossRef]

Li, Z. Y.

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519(2000).
[CrossRef]

Liang, J. Q.

H. M. Fei, Y. K. Jiang, J. Q. Liang, and D. L. Lin, “Transmission spectra through a photonic double quantum well system,” Chin. Phys. B 18, 2377–2382 (2009).
[CrossRef]

Lin, D. L.

H. M. Fei, Y. K. Jiang, J. Q. Liang, and D. L. Lin, “Transmission spectra through a photonic double quantum well system,” Chin. Phys. B 18, 2377–2382 (2009).
[CrossRef]

Y. Jiang, C. Niu, and D. L. Lin, “Resonance tunneling through photonic quantum wells,” Phys. Rev. B 59, 9981–9986 (1999).
[CrossRef]

Lin, M.

Liu, C. P.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

Liu, X.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

Miyazaki, H.

H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
[CrossRef]

Niu, C.

Y. Jiang, C. Niu, and D. L. Lin, “Resonance tunneling through photonic quantum wells,” Phys. Rev. B 59, 9981–9986 (1999).
[CrossRef]

Ouyang, Z.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Prather, D. W.

Qiao, F.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Qiu, G.

Sadeghi, S. M.

S. M. Sadeghi and W. Li, “Generation of bonding and antibonding photonic modes in laser-induced photonic double quantum wells,” Phys. Rev. B 81, 155317 (2010).
[CrossRef]

Sharkawy, A.

Shen, Z.

L. Wang, Z. Shen, B. Fan, and Z. Wang, “High transmittance of connected resonant modes,” Opt. Commun. 283, 2155–2159(2010).
[CrossRef]

Sheng, P.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Shi, S.

Singh, M. R.

J. D. Cox and M. R. Singh, “Resonant tunneling in photonic double quantum well heterostructures,” Nanoscale Res. Lett. 5, 484–488 (2010).
[CrossRef] [PubMed]

Tanner, D. B.

C. J. Fu, Z. M. Zhang, and D. B. Tanner, “Energy transmission by photon tunneling in multilayer structures including negative index materials,” Trans. Am. Soc. Mech. Eng. 127, 1046–1052(2005).
[CrossRef]

Tus, R.

L. Esaki and R. Tus, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Wan, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084–2086 (1998).
[CrossRef]

Wang, H. Z.

C. P. Yin, J. W. Dong, and H. Z. Wang, “Resonant modes and inter-well coupling in photonic quantum well with negative index materials,” Eur. Phys. J. B 67, 221–224 (2009).
[CrossRef]

Wang, L.

L. Wang, Z. Shen, B. Fan, and Z. Wang, “High transmittance of connected resonant modes,” Opt. Commun. 283, 2155–2159(2010).
[CrossRef]

Wang, Z.

L. Wang, Z. Shen, B. Fan, and Z. Wang, “High transmittance of connected resonant modes,” Opt. Commun. 283, 2155–2159(2010).
[CrossRef]

Watanabe, T.

H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
[CrossRef]

Wen, S.

Y. Xiang, X. Dai, S. Wen, and D. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604(2007).
[CrossRef]

Wu, C. J.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

Xiang, Y.

Y. Xiang, X. Dai, S. Wen, and D. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604(2007).
[CrossRef]

Xu, C.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

Xu, J.

Xu, X.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

Yin, C. P.

C. P. Yin, J. W. Dong, and H. Z. Wang, “Resonant modes and inter-well coupling in photonic quantum well with negative index materials,” Eur. Phys. J. B 67, 221–224 (2009).
[CrossRef]

Zhang, C.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084–2086 (1998).
[CrossRef]

Zhang, Y. W.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[CrossRef]

Zhang, Z. M.

C. J. Fu, Z. M. Zhang, and D. B. Tanner, “Energy transmission by photon tunneling in multilayer structures including negative index materials,” Trans. Am. Soc. Mech. Eng. 127, 1046–1052(2005).
[CrossRef]

Zhang, Z. Q.

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519(2000).
[CrossRef]

Zhou, L.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Zhu, S. Y.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[CrossRef]

Zi, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084–2086 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084–2086 (1998).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[CrossRef]

Chin. Phys. B

H. M. Fei, Y. K. Jiang, J. Q. Liang, and D. L. Lin, “Transmission spectra through a photonic double quantum well system,” Chin. Phys. B 18, 2377–2382 (2009).
[CrossRef]

Eur. Phys. J. B

C. P. Yin, J. W. Dong, and H. Z. Wang, “Resonant modes and inter-well coupling in photonic quantum well with negative index materials,” Eur. Phys. J. B 67, 221–224 (2009).
[CrossRef]

IBM J. Res. Dev.

L. Esaki and R. Tus, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

J. Phys. Soc. Jpn.

H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
[CrossRef]

Nanoscale Res. Lett.

J. D. Cox and M. R. Singh, “Resonant tunneling in photonic double quantum well heterostructures,” Nanoscale Res. Lett. 5, 484–488 (2010).
[CrossRef] [PubMed]

Opt. Commun.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280, 221–224 (2007).
[CrossRef]

L. Wang, Z. Shen, B. Fan, and Z. Wang, “High transmittance of connected resonant modes,” Opt. Commun. 283, 2155–2159(2010).
[CrossRef]

Opt. Express

Phys. Rev. B

S. M. Sadeghi and W. Li, “Generation of bonding and antibonding photonic modes in laser-induced photonic double quantum wells,” Phys. Rev. B 81, 155317 (2010).
[CrossRef]

Y. Jiang, C. Niu, and D. L. Lin, “Resonance tunneling through photonic quantum wells,” Phys. Rev. B 59, 9981–9986 (1999).
[CrossRef]

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519(2000).
[CrossRef]

Phys. Rev. E

Y. Xiang, X. Dai, S. Wen, and D. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604(2007).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Trans. Am. Soc. Mech. Eng.

C. J. Fu, Z. M. Zhang, and D. B. Tanner, “Energy transmission by photon tunneling in multilayer structures including negative index materials,” Trans. Am. Soc. Mech. Eng. 127, 1046–1052(2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The zero- n ¯ gap changes with the thickness ratio of the PIM layer and the NIM layer at normal incidence for different polarizations. The black area is the frequency range of the zero- n ¯ gap [14].

Fig. 2
Fig. 2

Band schematic of the PC A and B included in the PPQW. The dashed lines denote the passbands; the solid lines denote the bandgaps.

Fig. 3
Fig. 3

Transmittances of the two subordinate PQWs and the PPQW for TE polarization when the incident angle θ = 0 ° . (a) PQW A m B n A p ; (b) PQW B n A p B q ; (c) PPQW A m B n A p B q .

Fig. 4
Fig. 4

Transverse field distribution for the resonant modes in the PPQW. (a) Second resonant mode; (b) fifth resonant mode.

Fig. 5
Fig. 5

Transmittances of the PPQW at different incident angles for certain polarizations. (a) TE polarization; (b) TM polarization.

Fig. 6
Fig. 6

Transmittances of the PPQW for different polarizations under certain incident angles. (a) Incident angle θ = 0 ° ; (b) Incident angle θ = 30 ° .

Fig. 7
Fig. 7

Transmittances of the PPQW under different the periodic numbers of the constituent PCs.

Fig. 8
Fig. 8

Band schematic of the parallel PDQW heterostructure.

Fig. 9
Fig. 9

Transmittances of the parallel PDQW heterostructure.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ ε 2 = a ω ep 2 ω 2 μ 2 = b ω mp 2 ω 2 ,
T = | 1 M 11 | 2 .
M = ( M 11 M 12 M 21 M 22 ) = D 0 1 ( l = 1 n D l P l D l 1 ) D 0 ,
D = ( 1 1 k l z / μ l k l z / μ l ) for TE polarization ,
D = ( 1 1 k l z / ε l k l z / ε l ) for TM polarization ,
P = ( e i k l z d l 0 0 e i k l z d l ) for both polarizations ,

Metrics