Abstract

We show that the theory of potential transmittance (PT) is useful for problems involving photon tunneling through metal-dielectric stacks, regardless of whether the tunneling is mediated by Fabry–Perot or surface-plasmon resonances. A unifying principle is that, given a total thickness of metal, subdividing the metal into a larger number of thin films increases the maximum PT. For Fabry–Perot-based tunneling, we apply the concept of equivalent layers to stacks comprising dielectric-metal-dielectric unit cells and explore the conditions for impedance matching to an external air medium. This approach demonstrates that, to optimize transmittance, thicker metal films require higher-index dielectric spacers. For surface-plasmon-mediated tunneling, we confirm that the maximum transmittance also lies within the limits predicted by PT theory.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Baumeister, “Optical tunneling and its applications to optical filters,” Appl. Opt. 6, 897–906 (1967).
    [CrossRef] [PubMed]
  2. P. W. Baumeister, “Radiant power flow and absorptance in thin films,” Appl. Opt. 8, 423–436 (1969).
    [CrossRef] [PubMed]
  3. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678(1998).
    [CrossRef]
  4. C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A: Pure Appl. Opt. 6, 22–25 (2004).
    [CrossRef]
  5. R. S. Bennink, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999).
    [CrossRef]
  6. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
    [CrossRef]
  7. R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
    [CrossRef] [PubMed]
  8. S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev. 6, 204–210 (1999).
    [CrossRef]
  9. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).
  10. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230–239 (1957).
    [CrossRef]
  11. G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
    [CrossRef]
  12. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001).
    [CrossRef]
  13. B. V. Landau and P. H. Lissberger, “Theory of induced-transmission filters in terms of the concept of equivalent layers,” J. Opt. Soc. Am. 62, 1258–1264 (1972).
    [CrossRef]
  14. H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
    [CrossRef]
  15. P. H. Lissberger, “Coatings with induced transmission,” Appl. Opt. 20, 95–104 (1981).
    [CrossRef] [PubMed]
  16. I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
    [CrossRef] [PubMed]
  17. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  18. G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
    [CrossRef]
  19. H. Cho, C. Yun, and S. Yoo, “Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics,” Opt. Express 18, 3404–3414 (2010).
    [CrossRef] [PubMed]
  20. D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
    [CrossRef]
  21. Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
    [CrossRef]
  22. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  23. S. Blair, “Anomalous loss scaling in periodically absorbing media,” J. Opt. Soc. Am. B 18, 1943–1948 (2001).
    [CrossRef]
  24. M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010).
    [CrossRef]
  25. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  26. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
    [CrossRef] [PubMed]
  27. N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: application to super-resolution,” Opt. Express 17, 17517–17528 (2009).
    [CrossRef] [PubMed]
  28. S. Feng, J. Merle Elson, and P. L. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
    [CrossRef]

2010 (3)

G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
[CrossRef]

H. Cho, C. Yun, and S. Yoo, “Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics,” Opt. Express 18, 3404–3414 (2010).
[CrossRef] [PubMed]

M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010).
[CrossRef]

2009 (2)

N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: application to super-resolution,” Opt. Express 17, 17517–17528 (2009).
[CrossRef] [PubMed]

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

2007 (2)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

2006 (2)

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Feng, J. Merle Elson, and P. L. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[CrossRef]

2004 (2)

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A: Pure Appl. Opt. 6, 22–25 (2004).
[CrossRef]

2003 (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).

2001 (1)

1999 (2)

R. S. Bennink, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999).
[CrossRef]

S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev. 6, 204–210 (1999).
[CrossRef]

1998 (2)

1997 (1)

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

1985 (1)

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[CrossRef] [PubMed]

1981 (1)

1978 (1)

H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
[CrossRef]

1972 (1)

1969 (1)

1967 (1)

1957 (1)

Akozbek, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Alekseyev, L. V.

Baumeister, P. W.

Bennink, R. S.

Berning, P. H.

Blair, S.

Bloemer, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Bloemer, M. J.

Boyd, R. W.

Chen, H.

G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
[CrossRef]

Cho, H.

Choi, Y.-K.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

D’Aguanno, G.

N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: application to super-resolution,” Opt. Express 17, 17517–17528 (2009).
[CrossRef] [PubMed]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Djurisic, A. B.

Dragila, R.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[CrossRef] [PubMed]

Du, G.-Q.

G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
[CrossRef]

Elazar, J. M.

Feng, S.

S. Feng, J. Merle Elson, and P. L. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[CrossRef]

Fuentes-Hernandez, C.

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Ha, Y.-K.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Hayashi, S.

M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010).
[CrossRef]

S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev. 6, 204–210 (1999).
[CrossRef]

Hooper, I. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Jacob, Z.

Jiang, H.-T.

G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
[CrossRef]

Kee, C.-S.

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A: Pure Appl. Opt. 6, 22–25 (2004).
[CrossRef]

Kim, J.-E.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Kim, K.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A: Pure Appl. Opt. 6, 22–25 (2004).
[CrossRef]

Kippelen, B.

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Kurokawa, H.

S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev. 6, 204–210 (1999).
[CrossRef]

Landau, B. V.

Leftheriotis, G.

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

Lim, H.

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A: Pure Appl. Opt. 6, 22–25 (2004).
[CrossRef]

Lissberger, P. H.

Liu, Z.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Luther-Davies, B.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[CrossRef] [PubMed]

Macleod, H. A.

H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
[CrossRef]

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001).
[CrossRef]

Majewski, M. L.

Mattiucci, N.

N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: application to super-resolution,” Opt. Express 17, 17517–17528 (2009).
[CrossRef] [PubMed]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Merle Elson, J.

S. Feng, J. Merle Elson, and P. L. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[CrossRef]

Narimanov, E.

Oga, H.

S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev. 6, 204–210 (1999).
[CrossRef]

Overfelt, P. L.

S. Feng, J. Merle Elson, and P. L. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[CrossRef]

Owens, D.

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Park, H. Y.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Patrikios, D.

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).

Preist, T. W.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Rakic, A. D.

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).

Sambles, J. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Scalora, M.

N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: application to super-resolution,” Opt. Express 17, 17517–17528 (2009).
[CrossRef] [PubMed]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678(1998).
[CrossRef]

Sibilia, C.

Sipe, J. E.

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Tomita, S.

M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010).
[CrossRef]

Turner, A. F.

Vukovic, S.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[CrossRef] [PubMed]

Wang, L.

G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
[CrossRef]

Wang, Z.-S.

G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
[CrossRef]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).

Xiong, Y.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Yanagi, H.

M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

Yianoulis, P.

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

Yoo, S.

Yoon, Y.-K.

Yoshida, M.

M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010).
[CrossRef]

Yun, C.

Zhang, X.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678(1998).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

J. Appl. Phys. (1)

G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).

J. Opt. A: Pure Appl. Opt. (1)

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A: Pure Appl. Opt. 6, 22–25 (2004).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Opt. Acta (1)

H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
[CrossRef]

Opt. Commun. (1)

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Rev. (1)

S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev. 6, 204–210 (1999).
[CrossRef]

Phys. Rev. B (2)

M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010).
[CrossRef]

S. Feng, J. Merle Elson, and P. L. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[CrossRef] [PubMed]

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Thin Solid Films (2)

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Other (2)

P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Normal incidence PT MAX of a silver film versus wavelength for film thicknesses of 10, 20, 40, 60, and 80 nm (top to bottom). (b) Dotted curve shows the normal incidence PT MAX versus film thickness for a silver film at the 550 nm wavelength. Solid lines indicate the maximum PT for a multilayer containing 10, 20, and 50 Ag films, where each Ag film is 20 nm thick. (c)  PT MAX versus transverse component of the wave propagation vector (transverse spatial frequency) for three different thicknesses (as indicated by the labels) of an Ag film at the 550 nm wavelength. Solid curves correspond to TE polarization and dotted curves correspond to TM polarization.

Fig. 2
Fig. 2

(a) Schematic diagram of a DMD unit cell in air with normal-incidence light. The symmetric DMD cell can be replaced by a single layer with frequency-dependent effective index and phase thickness. (b) Schematic diagram of a one-dimensional MD multilayer constructed from a sequence of N unit cells.

Fig. 3
Fig. 3

(a) Maximum transmittance versus ideal metal layer thickness is plotted for a DMD unit cell in air at a wavelength of 550 nm . A metal refractive index N M = 3.1688 i was assumed, approximating Ag at 550 nm . The labels indicate the real refractive index ( n D ) assumed for the dielectric layers. The vertical dotted line indicates the analytical result predicted by Eq. (9) for the case n D = κ M = 3.1688 . (b) Transmittance is plotted for N (1, 5, and 10 as indicated by the labels) period multilayers under an ideal metal assumption, with n D = 3.1688 , d D = 21.7 nm , and d M = 31.86 nm .

Fig. 4
Fig. 4

(a) Normal-incidence transmittance versus thickness of the dielectric layers (for three different values of the dielectric refractive index as indicated by the labels) is plotted for a DMD unit cell in air at the 550 nm wavelength, with metal index N M = 0.1342 3.1688 i (representing Ag at 550 nm ) and metal thickness 25 nm . The dotted line indicates PT 1 , MAX . (b) Maximum transmittance is plotted versus metal thickness at the 550 nm wavelength for various dielectric indices as labeled. Dotted curve indicates PT 1 , MAX .

Fig. 5
Fig. 5

(a) Maximum transmittance at the 550 nm wavelength for a DMD unit cell is plotted versus the refractive index of the dielectric layers for Ag layer thicknesses of 15, 25, and 40 nm . Dotted lines indicate PT 1 , MAX . Inset: top of the curves for 15 and 25 nm thick Ag layers. (b) Refractive index that enables optimal impedance matching of an Ag film in a DMD structure is plotted versus the Ag film thickness for three different wavelengths.

Fig. 6
Fig. 6

Spectrally dependent, normal-incidence transmittance of MD multilayers is plotted for N = 5 , 10, and 20. 25 nm thick Ag layers and a nondispersive dielectric with n D = 4.75 (thick solid line) or n D = 2.3 (thin solid line) were assumed. The unit cell dielectric thickness was set to d D = 17.5 nm and d D = 45.5 nm for the higher- and lower-index cases, respectively. Dotted curves indicate PT MAX of a multilayer containing N Ag layers (each 25 nm thick).

Fig. 7
Fig. 7

Schematic diagram illustrates prism-based coupling of evanescent waves through an N period MD stack with symmetric DMD unit cells. The prisms have refractive index n P > n D .

Fig. 8
Fig. 8

Theoretical reflectance (dash-dot line), transmittance (thick solid line), and PT MAX (dotted line) for a one-period DMD structure with n D = 1.38 , d D = 220 nm , N M = 0.066 4.0 i , and d M = 60 nm . The wavelength is 632.8 nm , and data is plotted versus incident angle inside a prism medium with n P = 1.515 . The vertical dotted curve indicates the critical angle for total internal reflection between the prism and the dielectric medium. The thin solid curve shows the transmittance for d D = 300 nm to facilitate direct comparison with [7].

Fig. 9
Fig. 9

(a) Transmittance (solid and dash-dot curves) and PT MAX (dotted curves) predicted for 1, 5, 10, and 20 period DMD stacks (note: T MAX and PT MAX reduce with increasing number of periods) versus the normalized transverse wave vector component. Dielectric indices and wavelength are the same as in Fig. 8, but here d D = 230 nm , N M = 0.1436 3.8045 i (from the Rakic model), and d M = 25 nm . (b) Transmittance, and maximum PT for the structures in (a) versus wavelength and for the incidence angle (i.e., k t = 1.4 k 0 ) that produces an impedance match at 632.8 nm wavelength.

Fig. 10
Fig. 10

(a) As in Fig. 9a, except for one, two, and four periods of a DMD stack with d D = d M = 50 nm , n D = 1.631 , and at a wavelength of 500 nm , where N M = 0.1436 3.8045 i (from the Rakic model). (b) As in Fig. 9b, but for the parameters in part (a) and for the incident angle (i.e., k t = 2.18 k 0 ) that produces an impedance match in this case.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

PT = T 1 R = T T + A ,
PT MAX = σ ( σ 2 1 ) 1 / 2 ,
σ = cosh ( 2 μ i ) + Γ 2 cos ( 2 μ r ) ( 1 + Γ 2 ) .
Γ TE = Im ( N M b ) / Re ( N M b ) Γ TM = Im ( N M / b ) / Re ( N M / b ) ,
μ C = μ r + i μ i = ( 2 π λ ) N M d M cos ( θ M ) .
n eff = n D { sin 2 δ cosh μ 1 2 ( κ M / n D n D / κ M ) cos 2 δ sinh μ 1 2 ( κ M / n D + n D / κ M ) sinh μ sin 2 δ cosh μ 1 2 ( κ M / n D n D / κ M ) cos 2 δ sinh μ + 1 2 ( κ M / n D + n D / κ M ) sinh μ } 1 / 2 ,
n eff = κ M { sin 2 δ cosh μ sinh μ sin 2 δ cosh μ + sinh μ } 1 / 2 .
n eff , MAX = κ M e μ .
d M , MAX = ( λ 0 2 π κ M ) ln ( κ M ) ; [ for     n D = κ M ] .

Metrics