Abstract

We show that the theory of potential transmittance (PT) is useful for problems involving photon tunneling through metal-dielectric stacks, regardless of whether the tunneling is mediated by Fabry–Perot or surface-plasmon resonances. A unifying principle is that, given a total thickness of metal, subdividing the metal into a larger number of thin films increases the maximum PT. For Fabry–Perot-based tunneling, we apply the concept of equivalent layers to stacks comprising dielectric-metal-dielectric unit cells and explore the conditions for impedance matching to an external air medium. This approach demonstrates that, to optimize transmittance, thicker metal films require higher-index dielectric spacers. For surface-plasmon-mediated tunneling, we confirm that the maximum transmittance also lies within the limits predicted by PT theory.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conditions for admittance-matched tunneling through symmetric metal-dielectric stacks

T.W. Allen and R.G. DeCorby
Opt. Express 20(S5) A578-A588 (2012)

Transparency and stability of Ag-based metal–dielectric multilayers

M. C. Zhang, T. W. Allen, B. Drobot, S. McFarlane, A. Meldrum, and R. G. DeCorby
Appl. Opt. 52(31) 7479-7485 (2013)

Energy considerations for a superlens based on metal/dielectric multilayers

Mark J. Bloemer, Giuseppe D’Aguanno, Michael Scalora, Nadia Mattiucci, and Domenico de Ceglia
Opt. Express 16(23) 19342-19353 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription