Abstract

We propose a submicron plasmonic wavelength filtering/demultiplexing structure based on aperture-coupled slot cavities, which can overcome the limitation by the field skin depth of 25nm in a conventional evanescent- coupling approach, and thus lead to an easy-to-fabricate device structure. By introducing the stub-induced interference arm in the drop or bus waveguide, the power ratio between the different resonance modes can be effectively adjusted by changing the stub length. Also, the transmission peak can be about two times higher than that without stub structure in the bus waveguide. Our results open a way to construct nanoscale wave length filters and demultiplexers for high-density nanoplasmonic integration circuits.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830(2003).
    [CrossRef] [PubMed]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
    [CrossRef]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [CrossRef]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge Plasmon polaritions,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  5. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  7. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
    [CrossRef]
  8. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface Plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  9. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef] [PubMed]
  10. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
    [CrossRef]
  11. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
    [CrossRef] [PubMed]
  12. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
    [CrossRef] [PubMed]
  13. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  14. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
    [CrossRef] [PubMed]
  15. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
    [CrossRef] [PubMed]
  16. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
    [CrossRef] [PubMed]
  17. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  18. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  19. Y. Gong, X. Liu, and L. Wang, “High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
    [CrossRef] [PubMed]
  20. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmons in ring resonator,” Opt. Express 17, 24096–24101 (2009).
    [CrossRef]
  21. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
    [CrossRef] [PubMed]
  22. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008).
    [CrossRef] [PubMed]
  23. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009).
    [CrossRef]
  24. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
    [CrossRef] [PubMed]
  25. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937(2006).
    [CrossRef] [PubMed]
  26. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
    [CrossRef]
  27. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
    [CrossRef]
  28. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27, 2707–2713(2010).
    [CrossRef]
  29. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
    [CrossRef] [PubMed]
  30. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011).
    [CrossRef] [PubMed]
  31. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  32. Z. Han, V. Van, W. N. Herman, and P.-T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12678–12684 (2009).
    [CrossRef] [PubMed]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  34. F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19, 4848–4855 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (5)

2009 (4)

2008 (3)

2007 (4)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface Plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

2006 (3)

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937(2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

2005 (7)

2004 (2)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830(2003).
[CrossRef] [PubMed]

1999 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830(2003).
[CrossRef] [PubMed]

Berini, P.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge Plasmon polaritions,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface Plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Cai, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Deng, Q.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830(2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[CrossRef]

Du, C.

Duan, L.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830(2003).
[CrossRef] [PubMed]

Fan, S.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Fukui, M.

Gao, H.

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge Plasmon polaritions,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Gillet, J.-N.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[CrossRef]

Gong, Y.

Gong, Y. K.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

Gray, S.

Han, Z.

Haraguchi, M.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

Herman, W. N.

Ho, P.-T.

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface Plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Hu, F.

Huang, X.

Huang, X. G.

Jin, X.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Lee, T. W.

Lin, X.

Lin, X. S.

Liu, L.

Liu, X.

Liu, X. M.

Lu, H.

Luo, X.

Lv, Y.

Mao, D.

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge Plasmon polaritions,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Matsuzaki, Y.

Mei, X.

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge Plasmon polaritions,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Nakagaki, M.

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[CrossRef]

Okamoto, T.

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[CrossRef]

Pile, D. F. P.

Qiu, M.

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge Plasmon polaritions,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Shi, H.

Shin, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Tao, J.

Van, V.

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, C.

Wang, G.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, H. Z.

Wang, L.

Wang, L. R.

Wang, T. B.

Wen, X. W.

Xiao, S. S.

Yao, H.

Yi, H.

Yin, C. P.

Zhou, Z.

Zhu, J.

Zhu, Y.

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Adv. Mater. (1)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Nat. Photon. (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830(2003).
[CrossRef] [PubMed]

New J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[CrossRef]

Opt. Express (11)

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef] [PubMed]

F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19, 4848–4855 (2011).
[CrossRef] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
[CrossRef] [PubMed]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef] [PubMed]

Z. Han, V. Van, W. N. Herman, and P.-T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12678–12684 (2009).
[CrossRef] [PubMed]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmons in ring resonator,” Opt. Express 17, 24096–24101 (2009).
[CrossRef]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937(2006).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. B (3)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface Plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge Plasmon polaritions,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the plasmonic filter based on the aperture-coupled slot cavity.

Fig. 2
Fig. 2

(a) Transmission spectra of the structure with a one aperture-coupled slot cavity, with L = 600 nm , w = w t = 100 nm , s = 80 nm , g = 30 nm , t = 100 nm , d 1 = g / 2 . (b) Relationship between the peak wavelength and the cavity length L with w = w t = 100 nm , g = 30 nm , t = 100 nm , d 1 = g / 2 , s = L / 8 . (c) Transmission spectra of the drop waveguide at various aperture widths for cavity length L = 500 nm , s = L / 8 , and the other parameters unchanged. (d) FWHM and the peak wavelength vary with the aperture width g.

Fig. 3
Fig. 3

(a) Transmittance of the peak wavelength of modes 1 and 2 as functions of stub length d 1 . (b) Transmission spectra of one aperture-coupled slot cavity with different stub length d 1 for cavity length L = 600 nm , w = w t = 100 nm .

Fig. 4
Fig. 4

(a) Transmission spectra of a one aperture-coupled slot cavity for the stub length d 2 = g / 2 (See inset). (b) Transmission spectra of a one aperture-coupled slot cavity with different stub length d 2 for L = 600 nm , w = w t = 100 nm , s = 80 nm , g = 30 nm , t = 100 nm .

Fig. 5
Fig. 5

(a) Schematic diagram of a 1 × 4 wavelength demultiplexing structure based on aperture-coupled slot cavities. (b) Trans mission spectra of a 1 × 4 wavelength demultiplexing structure with L 1 = 410 nm , L 2 = 460 nm , L 3 = 530 nm , L 4 = 600 nm , D = 615 nm , w = w t = 100 nm , g = 30 nm , t = 100 nm , s i = L i / 8 . Magnetic-filed maps of the 1 × 4 wavelength demultiplexing structure for monochromatic incident signals at different wavelength, (c)  λ = 1061 nm , (d)  λ = 1493 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε d k m + ε m k d tanh ( k d 2 w ) = 0 ,
λ m = 2 n eff L ( m ϕ r / π ) ,

Metrics