Abstract

Though surface plasmon resonances can reduce image beam width of a plasmon superlens, they distort the transfer function in the spectrum and introduce large image sidelobes as well. In this paper, image enhancement of a plasmon film superlens is investigated by adding permittivity loss. First, we add the loss in the film of the superlens and observe the sidelobes suppression. Second, we introduce loss in the image region of the superlens device and observe a flatter transfer function and obtain improved image resolution. For the silver film superlens at a free space wavelength of 337.5nm, a beam width reduction of 69% is observed. Previously, we found that introducing roughness in the superlens can reduce the beam width. In this paper, we combine surface roughness with the method of adding loss in the image region and observe a further beam width reduction. The lossy sinusoidal surface superlens at a wavelength of 351nm gains a beam width reduction of 86% compared to the lossless flat superlens. Moreover, in this paper we provide a model for calculating the superlens near-field image intensity when the objects are illuminated by a laser source, and the more general five slits example is shown to further demonstrate the advantage of adding loss.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
    [CrossRef] [PubMed]
  3. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature 7, 435-441 (2008).
    [CrossRef]
  4. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
    [CrossRef] [PubMed]
  5. J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133-237 (1997).
    [CrossRef]
  6. D. R. Smith, “How to build a superlens,” Science 308, 502-503 (2005).
    [CrossRef] [PubMed]
  7. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23, 2383-2392(2006).
    [CrossRef]
  8. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
    [CrossRef] [PubMed]
  9. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
    [CrossRef] [PubMed]
  10. B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116(2006).
    [CrossRef]
  11. W. T. Lu and S. Sridhar, “Superlens image theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008).
    [CrossRef]
  12. C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106, 064314 (2009).
    [CrossRef]
  13. K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
    [CrossRef]
  14. J. Q. Bagley and L. Tsang, “Image enhancement using rough surface effects in plasmon materials,” presented at the 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Spokane, Washington, July 3-8, 2011.
  15. J. Q. Bagley, L. Tsang, K.-H. Ding, and A. Ishimaru, “Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources,” J. Opt. Soc. Am. B. 28, 1766-1777(2011).
    [CrossRef]
  16. L. Tsang and B. Wu, “Electromagnetic fields of Hertzian dipoles in layered media of moderate thickness including the effects of all modes,” IEEE Antennas Wirel. Propag. Lett. 6, 316-319(2007).
    [CrossRef]
  17. B. Wu, L. Tsang, and C.-J. Ong, “Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green's functions of moderate thickness,” Microwave Opt. Technol. Lett. 49, 3112-3118 (2007).
    [CrossRef]
  18. J. Q. Bagley, B. Wu, and L. Tsang, “Electromagnetic fields and modal excitations on a thin silver film,” J. Opt. Soc. Am. A 26, 2362-2367 (2009).
    [CrossRef]
  19. L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, “Numerical simulations,” in Vol. 2 of Scattering of Electromagnetic Waves (Wiley, 2001).
  20. L. Tsang, A draft for deriving the scalar field image intensity of the object illuminated by random source, 2011.
  21. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1990).
  22. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

2011 (1)

J. Q. Bagley, L. Tsang, K.-H. Ding, and A. Ishimaru, “Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources,” J. Opt. Soc. Am. B. 28, 1766-1777(2011).
[CrossRef]

2009 (3)

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106, 064314 (2009).
[CrossRef]

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

J. Q. Bagley, B. Wu, and L. Tsang, “Electromagnetic fields and modal excitations on a thin silver film,” J. Opt. Soc. Am. A 26, 2362-2367 (2009).
[CrossRef]

2008 (2)

W. T. Lu and S. Sridhar, “Superlens image theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature 7, 435-441 (2008).
[CrossRef]

2007 (4)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

L. Tsang and B. Wu, “Electromagnetic fields of Hertzian dipoles in layered media of moderate thickness including the effects of all modes,” IEEE Antennas Wirel. Propag. Lett. 6, 316-319(2007).
[CrossRef]

B. Wu, L. Tsang, and C.-J. Ong, “Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green's functions of moderate thickness,” Microwave Opt. Technol. Lett. 49, 3112-3118 (2007).
[CrossRef]

2006 (3)

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116(2006).
[CrossRef]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23, 2383-2392(2006).
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

D. R. Smith, “How to build a superlens,” Science 308, 502-503 (2005).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1997 (1)

J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Ao, C. O.

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, “Numerical simulations,” in Vol. 2 of Scattering of Electromagnetic Waves (Wiley, 2001).

Bagley, J. Q.

J. Q. Bagley, L. Tsang, K.-H. Ding, and A. Ishimaru, “Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources,” J. Opt. Soc. Am. B. 28, 1766-1777(2011).
[CrossRef]

J. Q. Bagley, B. Wu, and L. Tsang, “Electromagnetic fields and modal excitations on a thin silver film,” J. Opt. Soc. Am. A 26, 2362-2367 (2009).
[CrossRef]

J. Q. Bagley and L. Tsang, “Image enhancement using rough surface effects in plasmon materials,” presented at the 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Spokane, Washington, July 3-8, 2011.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Carminati, R.

J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Ding, K. H.

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, “Numerical simulations,” in Vol. 2 of Scattering of Electromagnetic Waves (Wiley, 2001).

Ding, K.-H.

J. Q. Bagley, L. Tsang, K.-H. Ding, and A. Ishimaru, “Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources,” J. Opt. Soc. Am. B. 28, 1766-1777(2011).
[CrossRef]

Du, C.

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106, 064314 (2009).
[CrossRef]

Durant, S.

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Greffet, J.-J.

J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Ishimaru, A.

J. Q. Bagley, L. Tsang, K.-H. Ding, and A. Ishimaru, “Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources,” J. Opt. Soc. Am. B. 28, 1766-1777(2011).
[CrossRef]

Jung, Y.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Kang, G.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Kim, K.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Kong, J. A.

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, “Numerical simulations,” in Vol. 2 of Scattering of Electromagnetic Waves (Wiley, 2001).

J. A. Kong, Electromagnetic Wave Theory (Wiley, 1990).

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Lee, K.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature 7, 435-441 (2008).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23, 2383-2392(2006).
[CrossRef]

Lu, W. T.

W. T. Lu and S. Sridhar, “Superlens image theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008).
[CrossRef]

Luo, X.

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106, 064314 (2009).
[CrossRef]

Ong, C.-J.

B. Wu, L. Tsang, and C.-J. Ong, “Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green's functions of moderate thickness,” Microwave Opt. Technol. Lett. 49, 3112-3118 (2007).
[CrossRef]

Park, H.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Pendry, J. B.

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116(2006).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, “How to build a superlens,” Science 308, 502-503 (2005).
[CrossRef] [PubMed]

Sridhar, S.

W. T. Lu and S. Sridhar, “Superlens image theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008).
[CrossRef]

Steele, J. M.

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Tsang, L.

J. Q. Bagley, L. Tsang, K.-H. Ding, and A. Ishimaru, “Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources,” J. Opt. Soc. Am. B. 28, 1766-1777(2011).
[CrossRef]

J. Q. Bagley, B. Wu, and L. Tsang, “Electromagnetic fields and modal excitations on a thin silver film,” J. Opt. Soc. Am. A 26, 2362-2367 (2009).
[CrossRef]

L. Tsang and B. Wu, “Electromagnetic fields of Hertzian dipoles in layered media of moderate thickness including the effects of all modes,” IEEE Antennas Wirel. Propag. Lett. 6, 316-319(2007).
[CrossRef]

B. Wu, L. Tsang, and C.-J. Ong, “Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green's functions of moderate thickness,” Microwave Opt. Technol. Lett. 49, 3112-3118 (2007).
[CrossRef]

J. Q. Bagley and L. Tsang, “Image enhancement using rough surface effects in plasmon materials,” presented at the 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Spokane, Washington, July 3-8, 2011.

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, “Numerical simulations,” in Vol. 2 of Scattering of Electromagnetic Waves (Wiley, 2001).

L. Tsang, A draft for deriving the scalar field image intensity of the object illuminated by random source, 2011.

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Wang, C.

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106, 064314 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Wood, B.

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116(2006).
[CrossRef]

Wu, B.

J. Q. Bagley, B. Wu, and L. Tsang, “Electromagnetic fields and modal excitations on a thin silver film,” J. Opt. Soc. Am. A 26, 2362-2367 (2009).
[CrossRef]

L. Tsang and B. Wu, “Electromagnetic fields of Hertzian dipoles in layered media of moderate thickness including the effects of all modes,” IEEE Antennas Wirel. Propag. Lett. 6, 316-319(2007).
[CrossRef]

B. Wu, L. Tsang, and C.-J. Ong, “Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green's functions of moderate thickness,” Microwave Opt. Technol. Lett. 49, 3112-3118 (2007).
[CrossRef]

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature 7, 435-441 (2008).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23, 2383-2392(2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, “Active phase retrieval of a near-field superlens via the impedance mismatch approach,” Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

L. Tsang and B. Wu, “Electromagnetic fields of Hertzian dipoles in layered media of moderate thickness including the effects of all modes,” IEEE Antennas Wirel. Propag. Lett. 6, 316-319(2007).
[CrossRef]

J. Appl. Phys. (1)

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106, 064314 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

J. Q. Bagley, L. Tsang, K.-H. Ding, and A. Ishimaru, “Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources,” J. Opt. Soc. Am. B. 28, 1766-1777(2011).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

B. Wu, L. Tsang, and C.-J. Ong, “Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green's functions of moderate thickness,” Microwave Opt. Technol. Lett. 49, 3112-3118 (2007).
[CrossRef]

Nano Lett. (2)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far field optical superlens,” Nano Lett. 7, 403-408(2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

Nature (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature 7, 435-441 (2008).
[CrossRef]

Phys. Rev. B (2)

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116(2006).
[CrossRef]

W. T. Lu and S. Sridhar, “Superlens image theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Science (3)

D. R. Smith, “How to build a superlens,” Science 308, 502-503 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Other (5)

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, “Numerical simulations,” in Vol. 2 of Scattering of Electromagnetic Waves (Wiley, 2001).

L. Tsang, A draft for deriving the scalar field image intensity of the object illuminated by random source, 2011.

J. A. Kong, Electromagnetic Wave Theory (Wiley, 1990).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

J. Q. Bagley and L. Tsang, “Image enhancement using rough surface effects in plasmon materials,” presented at the 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Spokane, Washington, July 3-8, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Diagram of an ideal superlens device.

Fig. 2
Fig. 2

(a)  T T M ( z , z ) for two different cases. (b) Image field of the superlens for case B.

Fig. 3
Fig. 3

(a) Image fields for the h = 0.2 wavelength and the h = 0.05 wavelength, while h f = h s = 0 . (b) Corresponding transfer functions.

Fig. 4
Fig. 4

(a) Normalized | H y | versus different loss added in the film of the superlens. (b) Corresponding transfer functions.

Fig. 5
Fig. 5

(a) Hy field for the match case with different losses. (b) Corresponding transfer functions for the field in (a).

Fig. 6
Fig. 6

(a) Image field versus Im ( ε r 2 ) for the case ε r 1 = 1 . (b) HBW versus Im ( ε r 2 ) for the case ε r 1 = 1 . (c) Transfer function versus different loss added in different regions. (d) HBW versus Im ( ε r 2 ) for the case ε r 1 = 1 + 0.3 i .

Fig. 7
Fig. 7

Comparison of the image field between the matched and mismatched cases.

Fig. 8
Fig. 8

Superlens with sinusoidal and Gaussian random roughness.

Fig. 9
Fig. 9

(a) Image fields versus sinusoidal and flat profiles with different permittivity. (b) Image field versus the Gaussian profile with different permittivity.

Fig. 10
Fig. 10

(a) Transfer functions and (b) normalized transfer functions for the sinusoidal superlens with loss.

Fig. 11
Fig. 11

Realistic superlens with a chromium mask illuminated by a laser.

Fig. 12
Fig. 12

Comparisons of the superlens images with and without back couplings. (a) Transfer functions and (b)  image intensities.

Fig. 13
Fig. 13

Image intensity for the five slits case. ε r 1 = 1 + 0.3 i , h s = h f = 0.1 , and h = 0.1 .

Fig. 14
Fig. 14

Comparisons between the high real permittivity technique and loss adding technique. ε r 1 = 1 + 0.3 i , h s = h f = 0.025 , and h = 0.1 . (a) Transfer function and (b) intensity.

Tables (3)

Tables Icon

Table 1 HBW, 50%-SBW, and 10%-SBW Versus h and h s ( h f )

Tables Icon

Table 2 HBW and 1st Side-Lobe Amplitude Versus Loss in the Superlens

Tables Icon

Table 3 HBWs and 40%-BWs for the Rough and Flat Superlenses with or without Loss

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

H y = i 4 π d k x e i k x x k 0 z e i k 0 z z T 02 T M e i k 2 z z = i 4 π d k x e i k x x k 0 z T T M ( k x ; z , z ) ,
T 02 T M = T 01 T M T 12 T M 1 + R 01 T M R 12 T M exp ( 2 i k 1 z h ) exp ( i k 1 z h ) exp ( i k 2 z h ) ,
T T M ( k x ; z , z ) = e i k 0 z z T 02 T M e i k 2 z z ,
T T M ( z , z ) = exp ( i k 0 z z ) T 02 T M exp ( i k 2 z z ) = exp ( k x z ) T 01 T M T 12 T M 1 + R 01 T M R 12 T M exp ( 2 i k 1 z h ) exp ( k x h ) exp ( k x h ) exp ( k x z ) = exp ( k x h / 2 ) exp ( k x h ) exp ( k x h ) exp ( k x ( h h / 2 ) ) = 1 .
z = h peak sin ( 2 π x / l cor ) ,
C ( x ) = exp ( x 2 / l cor ) ,
W ( k x ) = h rms 2 l cor exp [ ( k x · l cor / 2 ) 2 / ( 2 π ) ] ,
T T M ( k x ) = 2 i k 0 z · F T ( H y ( x ) ) . W Hamming ,
e in ( r , t ) = ( 1 2 π ) 3 d ω d k t exp ( i ω t + i k t · ρ ) exp ( i k 0 z z 0 ) E inc ( k t , ω ) ,
m ( r , t ) = ( 1 2 π ) 3 d ω d k t exp ( i ω t + i k t · ρ ) exp ( i k 0 z z 0 ) A ( ρ ) M ind ( k t , ω ) .
M ind ( k t , ω ) = E inc ( k t , ω ) × z ^ .
e ( r , t ) = ( 1 2 π ) 3 d ω d k t Object d s G ¯ E M ( r , r ; ω ) · M inc ( k t , ω ) exp ( i ω t + i k t · ρ ) exp ( i k 0 z z 0 ) A ( ρ ) ,
h ( r , t ) = ( 1 2 π ) 3 d ω d k t Object d s G ¯ H M ( r , r ; ω ) · M inc ( k t , ω ) exp ( i ω t + i k t · ρ ) exp ( i k 0 z z 0 ) A ( ρ ) ,
I = S ( r , t ) = e ( r , t ) × h ( r , t ) .
e ( r , t ) × h ( r , t ) = ( 1 2 π ) 6 d ω d k t Object d s v G ¯ E M ( r , r ; ω ) · M inc ( k t , ω ) exp ( i ω t + i k t · ρ ) exp ( i k 0 z z 0 ) A ( r ) × d ω d k t Object d s G ¯ * H M ( r , r ; ω ) · M * inc ( k t , ω ) exp ( i ω t i k t · ρ ) exp ( i k 0 z z 0 ) A * ( r ) = ( 1 2 π ) 6 i = 1 3 j = 1 3 k = 1 3 l = 1 3 d ω d k t d ω d k t Object d s Object d s G i j E M ( r , r ; ω ) A ( r ) G k l * H M ( r , r ; ω ) A * ( r ) exp ( i ω t + i k t · ρ ) exp ( i ω t i k t · ρ ) exp ( i k 0 z z 0 ) exp ( i k 0 z z 0 ) ( x ^ i × x ^ k ) M j inc ( k t , ω ) M l * inc ( k t , ω ) ,
M j inc ( k t , ω ) M l * inc ( k t , ω ) = { 0 j or l = 3 ( 1 ) j + l E 1 + j mod 2 inc ( k t , ω ) E 1 + l mod 2 * inc ( k t , ω ) else .
E j inc ( k t , ω ) E l * inc ( k t , ω ) = { 0 j = 3 or l = 3 or j l ( 2 π ) 3 W ( ω ) Q ( k t ) δ ( ω ω ) δ ( k t k t ) else .
M j inc ( k t , ω ) M l * inc ( k t , ω ) = { 0 j = 3 or l = 3 or j l ( 2 π ) 3 W ( ω ) Q ( k t ) δ ( ω ω ) δ ( k t k t ) else .
e ( r , t ) × h ( r , t ) = ( 1 2 π ) 3 j = 1 2 d ω W ( ω ) Object d s i = 1 3 G i j E M ( r , r ; ω ) A ( r ) Object d s k = 1 3 G k j * H M ( r , r ; ω ) A * ( r ) ( x ^ i × x ^ k ) d k t Q ( k t ) exp ( i k t · ( ρ ρ ) ) .
Q ( k t ) = 2 π ( Δ k ) 2 exp [ k t · k t 2 ( Δ k ) 2 ] ,
e ( r , t ) × h ( r , t ) = 1 2 π j = 1 2 d ω W ( ω ) Object d s i = 1 3 G i j E M ( r , r ; ω ) A ( r ) Object d s k = 1 3 G k j * H M ( r , r ; ω ) A * ( r ) ( x ^ i × x ^ k ) · exp [ ( Δ k ) 2 | ρ ρ | 2 / 2 ] .
M j inc ( k t , ω ) M l * inc ( k t , ω ) = { 0 else ( 2 π ) 3 W ( ω ) Q ( k t ) δ ( ω ω ) δ ( k t k t ) j = l = 2 .
e ( r , t ) × h ( r , t ) = 1 2 π d ω W ( ω ) Object d s i = 1 3 G i 2 E M ( r , r ; ω ) A ( r ) Object d s k = 1 3 G k 2 * H M ( r , r ; ω ) A * ( r ) ( x ^ i × x ^ k ) · exp [ ( Δ k ) 2 | ρ ρ | 2 / 2 ] .
A ( r ) = A ( x 1 ) .
e ( r , t ) × h ( r , t ) = 1 2 π d ω W ( ω ) X d x A ( x ) Y d y i = 1 3 G i 2 E M ( r , r ; ω ) X d x A ( x ) Y d y k = 1 3 G k 2 H M ( r , r ; ω ) ( x ^ i × x ^ k ) · exp [ ( Δ k ) 2 | ρ ρ | 2 / 2 ] .
e ( r , t ) × h ( r , t ) = 1 2 π d ω W ( ω ) X d x A ( x ) Y d y i = 1 3 G i 2 E M ( r , r ; ω ) · X d x A ( x ) Y d y k = 1 3 G k 2 H M ( r , r ; ω ) ( x ^ i × x ^ k ) .
e ( r , t ) × h ( r , t ) = 1 2 π d ω W ( ω ) [ X d x A ( x ) G x y E M 2 D ( x , x ; ω ) X d x A ( x ) G y y * H M 2 D ( x , x ; ω ) z ^ X d x A ( x ) G z y E M 2 D ( x , x ; ω ) X d x A ( x ) G y y * H M 2 D ( x , x ; ω ) x ^ ] ,
e ( r , t ) × h ( r , t ) = 1 2 π Re { X d x A ( x ) G x y E M 2 D ( x , x ; ω c ) X d x A ( x ) G y y * H M 2 D ( x , x ; ω c ) z ^ X d x A ( x ) G z y E M 2 D ( x , x ; ω c ) X d x A ( x ) G y y * H M 2 D ( x , x ; ω c ) x ^ ] } · { 2 ω c Δ ω / 2 ω c + Δ ω / 2 d ω W ( ω ) } ,
T b c T M ( k x ; z , z ) = T T M ( k x ; z , z ) ( 1 + R 0 , 1 T M ) [ 1 r 01 T M R 0 , 1 T M e 2 i k 0 z h s ] 1 ,

Metrics