Abstract

A mid-IR supercontinuum (SC) fiber laser based on a thulium-doped fiber amplifier (TDFA) is demonstrated. A continuous spectrum extending from 1.9 to 4.5μm is generated with 0.7W time-average power in wave lengths beyond 3.8μm. The laser outputs a total average power of up to 2.6W from 8.5m length of ZrF4BaF2LaF3AlF3NaF (ZBLAN) fiber, with an optical conversion efficiency of 9% from the TDFA pump to the mid-IR SC. Optimal efficiency in generating wavelengths beyond 3.8μm is achieved by reducing the losses in the TDFA stage and optimizing the ZBLAN fiber length. We demonstrate a novel (to our knowledge) approach of generating modulation instability-initiated SC starting from 1.55μm by splitting the spectral shifting process into two steps. In the first step, amplified approximately nanosecond-long 1.55μm laser diode pulses with 2.5kW peak power generate a SC extending beyond 2.1μm in 25m length of standard single-mode fiber (SMF). The 2μm wavelength components at the standard SMF output are amplified in a TDFA and coupled into ZBLAN fiber leading to mid-IR SC generation. Up to 270nm SC long wavelength edge extension and 2.5× higher optical conversion efficiency to wavelengths beyond 3.8μm are achieved by switching an Er:Yb-based power amplifier stage with a TDFA. The laser also demonstrates scalability in the average output power with respect to the pulse repetition rate and the amplifier pump power. Numerical simulations are performed by solving the generalized nonlinear Schrödinger equation, which show the long wavelength edge of the SC to be limited by the loss in ZBLAN.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [CrossRef]
  2. S. T. Sanders, “A wavelength-agile source for broadband sensing,” Appl. Phys. B 75, 799–802 (2002).
    [CrossRef]
  3. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemical with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48, B17–B22 (2009).
    [CrossRef] [PubMed]
  4. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34, 470–472 (2009).
    [CrossRef] [PubMed]
  5. C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.
  6. I.T.Sorokina and K.L.Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003).
    [CrossRef]
  7. M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008).
    [CrossRef]
  8. Y. Bonetti and J. Faist, “Quantum cascade lasers: Entering the mid-infrared,” Nat. Photon. 3, 32–34 (2009).
    [CrossRef]
  9. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22 watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18, 26475–26483 (2010).
    [CrossRef] [PubMed]
  10. Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34, 2897–2899 (2009).
    [CrossRef] [PubMed]
  11. M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources And Applications, M.Ebrahim-Zadeh and I.T.Sorokina, eds. (Springer, 2008), pp. 315–346.
    [CrossRef]
  12. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
    [CrossRef] [PubMed]
  13. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [CrossRef]
  14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [CrossRef] [PubMed]
  15. C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
    [CrossRef]
  16. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
    [CrossRef] [PubMed]
  17. M. Kumar, Optical Sciences Laboratory, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA, and M. N. Islam are preparing a manuscript to be called “Mid-infrared supercontinuum fiber laser-based stand-off reflection spectroscopy.”
  18. G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790 nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208 (2006).
    [CrossRef]
  19. A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
    [PubMed]
  20. G. Imeshev and M. Fermann, “230 kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13, 7424–7431 (2005).
    [CrossRef] [PubMed]
  21. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
    [CrossRef]
  22. P. T. Rakich, Y. Fink, and M. Soljačić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33, 1690–1692 (2008).
    [CrossRef] [PubMed]
  23. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007).
    [CrossRef] [PubMed]
  24. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
    [CrossRef]
  25. D. L. Auble and T. P. Meyers, “An open path, fast response infrared absorption gas analyzer for H2O and CO2,” Bound.-Lay. Meteorol. 59, 243–256 (1992).
    [CrossRef]
  26. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 50–57 (2006).
    [CrossRef] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  28. G. Chang, T. B. Norris, and H. G. Winful, “Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,” Opt. Lett. 28, 546–548 (2003).
    [CrossRef] [PubMed]
  29. A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985).
    [CrossRef]
  30. M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
    [CrossRef]
  31. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956(2010).
    [CrossRef]
  32. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
    [CrossRef]
  33. D. Faucher, A. Fraser, P. Zivojinovic, X. P. Godmaire, É. Weynant, M. Bernier, and R. Vallée, “High power handling shape memory alloy optical fiber connector,” Appl. Opt. 48, 5664–5667 (2009).
    [CrossRef] [PubMed]
  34. K. Li, G. Zhang, and L. Hu, “Watt-level ∼2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35, 4136–4138 (2010).
    [CrossRef] [PubMed]

2010 (3)

2009 (8)

D. Faucher, A. Fraser, P. Zivojinovic, X. P. Godmaire, É. Weynant, M. Bernier, and R. Vallée, “High power handling shape memory alloy optical fiber connector,” Appl. Opt. 48, 5664–5667 (2009).
[CrossRef] [PubMed]

Y. Bonetti and J. Faist, “Quantum cascade lasers: Entering the mid-infrared,” Nat. Photon. 3, 32–34 (2009).
[CrossRef]

Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34, 2897–2899 (2009).
[CrossRef] [PubMed]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemical with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48, B17–B22 (2009).
[CrossRef] [PubMed]

K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34, 470–472 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

2008 (6)

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[CrossRef] [PubMed]

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008).
[CrossRef]

P. T. Rakich, Y. Fink, and M. Soljačić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33, 1690–1692 (2008).
[CrossRef] [PubMed]

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
[CrossRef] [PubMed]

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

2007 (3)

2006 (2)

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790 nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208 (2006).
[CrossRef]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 50–57 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

2002 (1)

S. T. Sanders, “A wavelength-agile source for broadband sensing,” Appl. Phys. B 75, 799–802 (2002).
[CrossRef]

1992 (1)

D. L. Auble and T. P. Meyers, “An open path, fast response infrared absorption gas analyzer for H2O and CO2,” Bound.-Lay. Meteorol. 59, 243–256 (1992).
[CrossRef]

1985 (1)

A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Agger, S. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Arisholm, G.

Auble, D. L.

D. L. Auble and T. P. Meyers, “An open path, fast response infrared absorption gas analyzer for H2O and CO2,” Bound.-Lay. Meteorol. 59, 243–256 (1992).
[CrossRef]

Bai, Y.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008).
[CrossRef]

Bernier, M.

Bonetti, Y.

Y. Bonetti and J. Faist, “Quantum cascade lasers: Entering the mid-infrared,” Nat. Photon. 3, 32–34 (2009).
[CrossRef]

Botineau, J.

A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Brown, D. M.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Büchter, K.-D. F.

Capasso, F.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Cardinal, T.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Carter, A.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Chadwick, C. T.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Chang, G.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Chen, Y.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Cheng, M.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Cheng, M.-Y.

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

Cordeiro, C. M. B.

Couzi, M.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Cronin-Golomb, M.

Dantus, M.

Darvish, S. R.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008).
[CrossRef]

Diehl, L.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Domachuk, P.

Edwards, P. S.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Faist, J.

Y. Bonetti and J. Faist, “Quantum cascade lasers: Entering the mid-infrared,” Nat. Photon. 3, 32–34 (2009).
[CrossRef]

Fan, J. Y.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Farroni, J.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Faucher, D.

Fejer, M. M.

Fermann, M.

Fink, Y.

Fonnum, H.

Fraser, A.

Freeman, M. J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

Frith, G. P.

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790 nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208 (2006).
[CrossRef]

Furniss, D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Galvanauskas, A.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
[CrossRef] [PubMed]

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

George, A. K.

Go, R.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Godmaire, X. P.

Guelachvili, G.

Hallen, H.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Harrington, J. A.

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
[CrossRef]

Harris, D. A.

Hegde, R. S.

Herrmann, H.

Hu, L.

Imeshev, G.

Islam, M. N.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

M. Kumar, Optical Sciences Laboratory, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA, and M. N. Islam are preparing a manuscript to be called “Mid-infrared supercontinuum fiber laser-based stand-off reflection spectroscopy.”

Jackson, S. D.

M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources And Applications, M.Ebrahim-Zadeh and I.T.Sorokina, eds. (Springer, 2008), pp. 315–346.
[CrossRef]

Jacobson, N.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Jiang, M.

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Knight, J. C.

Kulkarni, O. P.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

Kumar, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Kumar, M.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
[CrossRef] [PubMed]

M. Kumar, Optical Sciences Laboratory, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA, and M. N. Islam are preparing a manuscript to be called “Mid-infrared supercontinuum fiber laser-based stand-off reflection spectroscopy.”

Lancaster, D. G.

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790 nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208 (2006).
[CrossRef]

Langrock, C.

Li, D.

Li, H.

Li, K.

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Lippert, E.

Liu, Z. Z.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Lozovoy, V. V.

Lyakh, A.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Machewirth, D.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Macon, L.

A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Mandon, J.

Maulini, R.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Maze, G.

A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Mazé, G.

Meyers, T. P.

D. L. Auble and T. P. Meyers, “An open path, fast response infrared absorption gas analyzer for H2O and CO2,” Bound.-Lay. Meteorol. 59, 243–256 (1992).
[CrossRef]

Nolan, D. A.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

Norris, T. B.

O’Donnell, M. D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Omenetto, F. G.

Patel, N.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Peng, Y.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956(2010).
[CrossRef]

Pflügl, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Philbrick, C. R.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Picqué, N.

Pollnau, M.

M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources And Applications, M.Ebrahim-Zadeh and I.T.Sorokina, eds. (Springer, 2008), pp. 315–346.
[CrossRef]

Poulain, M.

Povlsen, J. H.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Rakich, P. T.

Razeghi, M.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008).
[CrossRef]

Richardson, K.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Rivero, C.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Saissy, A.

A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Samson, B.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Sanchez, A.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Sanders, S. T.

S. T. Sanders, “A wavelength-agile source for broadband sensing,” Appl. Phys. B 75, 799–802 (2002).
[CrossRef]

Seddon, A. B.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Slivken, S.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008).
[CrossRef]

Sohler, W.

Soljacic, M.

Sorokin, E.

Sorokina, I. T.

Stenersen, K.

Stolen, R.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Tanbun-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Tankala, K.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Tayebati, P.

Terry, F. L.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

Torruellas, W.

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

Tsekoun, A.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Vallée, R.

Wang, A.

Wang, Q. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wang, W.

Wang, X. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wei, X.

Weynant, É.

Willitsford, A. H.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Winful, H. G.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

Wolchover, N. A.

Wood, W. A.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

Wrzesinski, P. J.

Wyant, A. M.

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007).
[CrossRef] [PubMed]

Xu, B.

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Zhang, G.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956(2010).
[CrossRef]

Zivojinovic, P.

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956(2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S. T. Sanders, “A wavelength-agile source for broadband sensing,” Appl. Phys. B 75, 799–802 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Bound.-Lay. Meteorol. (1)

D. L. Auble and T. P. Meyers, “An open path, fast response infrared absorption gas analyzer for H2O and CO2,” Bound.-Lay. Meteorol. 59, 243–256 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

J. Phys. Lett. (1)

A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Nat. Photon. (1)

Y. Bonetti and J. Faist, “Quantum cascade lasers: Entering the mid-infrared,” Nat. Photon. 3, 32–34 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Opt. Mater. (1)

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008).
[CrossRef]

Opt. Photon. News (1)

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008).
[CrossRef]

Proc. SPIE (1)

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790 nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208 (2006).
[CrossRef]

Other (7)

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6.
[PubMed]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
[CrossRef]

M. Kumar, Optical Sciences Laboratory, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA, and M. N. Islam are preparing a manuscript to be called “Mid-infrared supercontinuum fiber laser-based stand-off reflection spectroscopy.”

C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.

I.T.Sorokina and K.L.Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003).
[CrossRef]

M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources And Applications, M.Ebrahim-Zadeh and I.T.Sorokina, eds. (Springer, 2008), pp. 315–346.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of experimental setup depicting two-stage mid-IR SC generation using TDFA. DCF, dual-cladding fiber.

Fig. 2
Fig. 2

Mid-IR SC spectrum from 8.5 m ZBLAN fiber pumped with TDFA extending from ~1.9 to 4.5 μm .

Fig. 3
Fig. 3

Output from 8.5 m length of ZBLAN showing power scaling with repetition rate and 790 nm pump power: (a) output time-average power, (b) output spectrum.

Fig. 4
Fig. 4

Mid-IR SC spectrum from 8.5 m ZBLAN in TDFA power amp system compared to 12 m ZBLAN in EYFA-based system [17].

Fig. 5
Fig. 5

Evolution of the long wavelength SC edge in 8.5 m ZBLAN fiber length as a function of TDFA pump power measured at 500 kHz pulse repetition rate: (a) spectrum, (b) long wavelength edge.

Fig. 6
Fig. 6

Power meter measurement of TDFA output, 8.5 m ZBLAN SC output, and output average power beyond 3.8 μm versus TDFA pump power.

Fig. 7
Fig. 7

Experimental optimization of power generation beyond 3.8 μm for various lengths of ZBLAN fibers.

Fig. 8
Fig. 8

Stage 1 peak power optimization: (a) output spectrum from 25 m standard SMF for various peak input powers of 1.55 μm pulses, (b)  12 m ZBLAN output at 8 W CW TDFA pump power for various 1.55 μm peak powers used in 2 μm light generation, (c) relative average power generated beyond 2.5 μm at output of 12 m ZBLAN as a function of the stage 1 peak power for fixed TDFA pump power.

Fig. 9
Fig. 9

8.5 m ZBLAN output at 20 W TDFA pump power for various standard SMF lengths in the first stage.

Fig. 10
Fig. 10

Output spectrum from 12 m length of ZBLAN fiber with spectrum extending from 1.9 to 4.5 μm .

Fig. 11
Fig. 11

(a) Comparison of simulation versus experimental result at the output of 25 m standard SMF with 2.5 kW peak input power pulses at 1553 nm , (b) comparison of simulation versus experimental result for the output of 8.5 m ZBLAN at 12 dB power gain in the TDFA.

Fig. 12
Fig. 12

Simulation results for confirming dependence of efficiency in long wavelength generation on ZBLAN length.

Fig. 13
Fig. 13

Simulation results for 1.55 μm peak power dependence on ZBLAN output: (a) spectral domain comparison between simulation and experiments for 1.5 kW and corresponding TDFA output time-domain pulse profile, (b)  2.5 kW peak power cases with ZBLAN spectral output comparison between experiments and simulations and corresponding TDFA output pulse profile.

Fig. 14
Fig. 14

(a) Simulation results comparing output spectrum of 8.5 m length of ZBLAN fiber for EYFA and TDFA systems, (b) pulse profile comparison at the input of the ZBLAN fiber in the two power amp systems.

Fig. 15
Fig. 15

(a) Input loss profile for ZBLAN fiber into the simulator, (b) corresponding output spectrum from 10 m length of ZBLAN fiber.

Tables (2)

Tables Icon

Table 1 Efficiency of Various Components of the TDFA-pumped ZBLAN Mid-IR SC Laser a b

Tables Icon

Table 2 Comparison of TDFA-Based Mid-IR SC Laser Efficiency with Other Mid-IR Lasers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z = ( D ^ + N ^ ) A ,
D ^ = i 2 β 2 2 A τ 2 + 1 6 β 3 3 A τ 3 + i 24 β 4 4 A τ 4 α 2 ,
N ^ = i γ ( 1 + i ω 0 t ) + [ ( 1 f R ) δ ( t ) + f R h R ( t ) ] | A ( z , t t ) | 2 d t ,

Metrics