Abstract

Terrace-microspheres of high-index glass (BaO-SiO2-TiO2 glass, nD=1.93) containing 0.3ppm of Nd3+ were used to investigate the interaction between Raman scattering due to a glass matrix and fluorescence due to Nd3+. The terrace-microspheres were pumped with a tunable CW Ti:sapphire laser (790nm830nm wavelength) for changing pumping wavelengths. With pumping in the 800830nm wavelength region, there was a spectral overlap between Raman scattering and Nd3+ fluorescence. Under such conditions, Nd3+ fluorescence works as a seeding and an amplifier of stimulated Raman scattering (SRS), resulting in SRS enhancement. With pumping of 20mW power at around 830nm wavelength, the terrace-microspheres showed the strongest SRS gain, 5–6 times of that of 790nm wavelength pumping. SRS thresholds of the terrace-microspheres were improved from 3mW (790nm wavelength pumping) to 0.3mW (830nm pumping) due to the enhancement effect. The potential application for a multiwavelength Raman laser with a low threshold was demonstrated in the near-IR region (λ=840940nm).

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3, 21–52(1980).
    [CrossRef]
  2. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [CrossRef] [PubMed]
  3. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
    [CrossRef] [PubMed]
  4. I. S. Grudinin and L. Maleki, “Efficient Raman laser based on a CaF2 resonator,” J. Opt. Soc. Am. B 25, 594–598(2008).
    [CrossRef]
  5. T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
    [CrossRef]
  6. P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific, 1988).
  7. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef] [PubMed]
  8. A. Serpenguzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654–656 (1995).
    [CrossRef] [PubMed]
  9. J. G. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [CrossRef] [PubMed]
  10. S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006).
    [CrossRef]
  11. S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40, 913–920 (2007).
    [CrossRef] [PubMed]
  12. S. Shibata, T. Yano, and H. Segawa, “Organic–inorganic hybrid materials for photonic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 1361–1369 (2008).
    [CrossRef]
  13. H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol-gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58, 319–325 (2011).
    [CrossRef]
  14. H. Uehara, T. Yano, and S. Shibata, “Terrace-microsphere lasers: spherical cavity lasers for multi-wavelength emission,” Proc. SPIE 7598, 75981E (2010).
    [CrossRef]
  15. A. S. L. Gomes and N. M. Lawandy, “Efficient stimulated Raman scattering externally seeded by molecular spontaneous emission,” Opt. Lett. 19, 408–410 (1994).
    [CrossRef] [PubMed]
  16. A. F. Kwok and R. K. Chang, “Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering,” Opt. Lett. 17, 1262–1264 (1992).
    [CrossRef] [PubMed]
  17. J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
    [CrossRef]
  18. M. Saito, T. Yano, H. Segawa, and S. Shibata, “Site-selective excitation and fluorescence of Nd3+ ion-doped glasses for lasing at 900 nm band,” presented at the 3rd International Conference on Science and Technology for Advanced Ceramics, Yokohama, Japan, June 16-18, 2009.
  19. B. O. Mysen and P. Richet, “The titanium anomalies,” in Silicate Glasses and Melts (Elsevier, 2005), pp. 357–386.
  20. C. Schultz-Münzenberg, “The quasi-static structure of oxide glasses, in Analysis of the Composition and Structure of Glass and Glass Ceramics, H.Bach and D.Krause, eds. (Springer, 1999), pp. 141–311.
  21. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
    [CrossRef] [PubMed]
  22. M. Domenecha and G. Lifante, “Continuous-wave laser operation at 1.3 μm in Nd3+-doped Zn:LiNbO3 channel waveguides,” Appl. Phys. Lett. 84, 3271–3273 (2004).
    [CrossRef]
  23. X. Pu and Z. Yang, “Enhancement of stimulated Raman scattering of weak-gain Raman modes in a pendant drop by dye-lasing gain,” J. Opt. Soc. Am. B 21, 343–348 (2004).
    [CrossRef]
  24. R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006).
    [CrossRef]
  25. S. Wada, H. Moriwaki, A. Nakamura, and H. Tashiro, “Injection seeding for the enhancement of high-order anti-Stokes stimulated Raman scattering,” Opt. Lett. 20, 848–850(1995).
    [CrossRef] [PubMed]
  26. G. P. Agrawal, “Theory of Raman amplifiers,” in Raman Amplification in Fiber Optical Communication Systems, C.Headley and G.P.Agrawal, eds. (Elsevier, 2005), pp. 33–102.
  27. J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003).
    [CrossRef]
  28. R. R. B. Correia, P. Alcantara, and S. L. S. Cunha, “Dye-induced spectral narrowing of stimulated scattering in CS2,” Chem. Phys. Lett. 313, 553–558 (1999).
    [CrossRef]

2011

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol-gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58, 319–325 (2011).
[CrossRef]

2010

H. Uehara, T. Yano, and S. Shibata, “Terrace-microsphere lasers: spherical cavity lasers for multi-wavelength emission,” Proc. SPIE 7598, 75981E (2010).
[CrossRef]

2008

S. Shibata, T. Yano, and H. Segawa, “Organic–inorganic hybrid materials for photonic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 1361–1369 (2008).
[CrossRef]

I. S. Grudinin and L. Maleki, “Efficient Raman laser based on a CaF2 resonator,” J. Opt. Soc. Am. B 25, 594–598(2008).
[CrossRef]

2007

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40, 913–920 (2007).
[CrossRef] [PubMed]

2006

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006).
[CrossRef]

R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006).
[CrossRef]

2005

J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
[CrossRef]

2004

2003

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003).
[CrossRef]

2002

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

1999

R. R. B. Correia, P. Alcantara, and S. L. S. Cunha, “Dye-induced spectral narrowing of stimulated scattering in CS2,” Chem. Phys. Lett. 313, 553–558 (1999).
[CrossRef]

1997

1996

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef] [PubMed]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

1995

1994

1992

1980

R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3, 21–52(1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Theory of Raman amplifiers,” in Raman Amplification in Fiber Optical Communication Systems, C.Headley and G.P.Agrawal, eds. (Elsevier, 2005), pp. 33–102.

Alcantara, P.

R. R. B. Correia, P. Alcantara, and S. L. S. Cunha, “Dye-induced spectral narrowing of stimulated scattering in CS2,” Chem. Phys. Lett. 313, 553–558 (1999).
[CrossRef]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
[CrossRef]

Arnold, S.

Ashida, S.

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006).
[CrossRef]

Barber, P. W.

P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific, 1988).

Birks, T. A.

Chang, R. K.

Cheng, A. Y. S.

J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
[CrossRef]

Cheng, J.

J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
[CrossRef]

Cheung, G.

Correia, R. R. B.

R. R. B. Correia, P. Alcantara, and S. L. S. Cunha, “Dye-induced spectral narrowing of stimulated scattering in CS2,” Chem. Phys. Lett. 313, 553–558 (1999).
[CrossRef]

Cunha, S. L. S.

R. R. B. Correia, P. Alcantara, and S. L. S. Cunha, “Dye-induced spectral narrowing of stimulated scattering in CS2,” Chem. Phys. Lett. 313, 553–558 (1999).
[CrossRef]

Dharmadhikari, A. K.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003).
[CrossRef]

Dharmadhikari, J. A.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003).
[CrossRef]

Domenecha, M.

M. Domenecha and G. Lifante, “Continuous-wave laser operation at 1.3 μm in Nd3+-doped Zn:LiNbO3 channel waveguides,” Appl. Phys. Lett. 84, 3271–3273 (2004).
[CrossRef]

Gomes, A. S. L.

Gorodetsky, M. L.

Griffel, G.

Grudinin, I. S.

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

He, Y.

J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
[CrossRef]

Ilchenko, V. S.

Jacques, F.

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
[CrossRef]

Knight, J. G.

Kwok, A. F.

Lawandy, N. M.

Lefevre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

Lifante, G.

M. Domenecha and G. Lifante, “Continuous-wave laser operation at 1.3 μm in Nd3+-doped Zn:LiNbO3 channel waveguides,” Appl. Phys. Lett. 84, 3271–3273 (2004).
[CrossRef]

Maleki, L.

Meresman, H.

R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006).
[CrossRef]

Min, B.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
[CrossRef]

Mishra, A.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003).
[CrossRef]

Moriwaki, H.

Mysen, B. O.

B. O. Mysen and P. Richet, “The titanium anomalies,” in Silicate Glasses and Melts (Elsevier, 2005), pp. 357–386.

Nakamura, A.

Pu, X.

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

Ravindra Kumar, G.

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003).
[CrossRef]

Reid, J. P.

R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006).
[CrossRef]

Richet, P.

B. O. Mysen and P. Richet, “The titanium anomalies,” in Silicate Glasses and Melts (Elsevier, 2005), pp. 357–386.

Saito, M.

M. Saito, T. Yano, H. Segawa, and S. Shibata, “Site-selective excitation and fluorescence of Nd3+ ion-doped glasses for lasing at 900 nm band,” presented at the 3rd International Conference on Science and Technology for Advanced Ceramics, Yokohama, Japan, June 16-18, 2009.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

Savchenkov, A. A.

Sayer, R. M.

R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006).
[CrossRef]

Schultz-Münzenberg, C.

C. Schultz-Münzenberg, “The quasi-static structure of oxide glasses, in Analysis of the Composition and Structure of Glass and Glass Ceramics, H.Bach and D.Krause, eds. (Springer, 1999), pp. 141–311.

Segawa, H.

S. Shibata, T. Yano, and H. Segawa, “Organic–inorganic hybrid materials for photonic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 1361–1369 (2008).
[CrossRef]

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40, 913–920 (2007).
[CrossRef] [PubMed]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006).
[CrossRef]

M. Saito, T. Yano, H. Segawa, and S. Shibata, “Site-selective excitation and fluorescence of Nd3+ ion-doped glasses for lasing at 900 nm band,” presented at the 3rd International Conference on Science and Technology for Advanced Ceramics, Yokohama, Japan, June 16-18, 2009.

Serpenguzel, A.

Shibata, S.

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol-gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58, 319–325 (2011).
[CrossRef]

H. Uehara, T. Yano, and S. Shibata, “Terrace-microsphere lasers: spherical cavity lasers for multi-wavelength emission,” Proc. SPIE 7598, 75981E (2010).
[CrossRef]

S. Shibata, T. Yano, and H. Segawa, “Organic–inorganic hybrid materials for photonic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 1361–1369 (2008).
[CrossRef]

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40, 913–920 (2007).
[CrossRef] [PubMed]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006).
[CrossRef]

M. Saito, T. Yano, H. Segawa, and S. Shibata, “Site-selective excitation and fluorescence of Nd3+ ion-doped glasses for lasing at 900 nm band,” presented at the 3rd International Conference on Science and Technology for Advanced Ceramics, Yokohama, Japan, June 16-18, 2009.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
[CrossRef]

Stolen, R. H.

R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3, 21–52(1980).
[CrossRef]

Symes, R.

R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006).
[CrossRef]

Tashiro, H.

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

Uehara, H.

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol-gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58, 319–325 (2011).
[CrossRef]

H. Uehara, T. Yano, and S. Shibata, “Terrace-microsphere lasers: spherical cavity lasers for multi-wavelength emission,” Proc. SPIE 7598, 75981E (2010).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
[CrossRef]

Wada, S.

Yang, J.

J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
[CrossRef]

Yang, L.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
[CrossRef]

Yang, Z.

Yano, T.

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol-gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58, 319–325 (2011).
[CrossRef]

H. Uehara, T. Yano, and S. Shibata, “Terrace-microsphere lasers: spherical cavity lasers for multi-wavelength emission,” Proc. SPIE 7598, 75981E (2010).
[CrossRef]

S. Shibata, T. Yano, and H. Segawa, “Organic–inorganic hybrid materials for photonic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 1361–1369 (2008).
[CrossRef]

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40, 913–920 (2007).
[CrossRef] [PubMed]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006).
[CrossRef]

M. Saito, T. Yano, H. Segawa, and S. Shibata, “Site-selective excitation and fluorescence of Nd3+ ion-doped glasses for lasing at 900 nm band,” presented at the 3rd International Conference on Science and Technology for Advanced Ceramics, Yokohama, Japan, June 16-18, 2009.

Zuo, H.

J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
[CrossRef]

Acc. Chem. Res.

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40, 913–920 (2007).
[CrossRef] [PubMed]

Appl. Phys. B

J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003).
[CrossRef]

Appl. Phys. Lett.

M. Domenecha and G. Lifante, “Continuous-wave laser operation at 1.3 μm in Nd3+-doped Zn:LiNbO3 channel waveguides,” Appl. Phys. Lett. 84, 3271–3273 (2004).
[CrossRef]

Chem. Phys. Lett.

R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006).
[CrossRef]

R. R. B. Correia, P. Alcantara, and S. L. S. Cunha, “Dye-induced spectral narrowing of stimulated scattering in CS2,” Chem. Phys. Lett. 313, 553–558 (1999).
[CrossRef]

Fiber Integr. Opt.

R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3, 21–52(1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Shibata, T. Yano, and H. Segawa, “Organic–inorganic hybrid materials for photonic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 1361–1369 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Sol-Gel Sci. Technol.

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol-gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58, 319–325 (2011).
[CrossRef]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006).
[CrossRef]

Nature

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

Opt. Commun.

J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005).
[CrossRef]

Opt. Lett.

Phys. Rev. A

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996).
[CrossRef] [PubMed]

Proc. SPIE

H. Uehara, T. Yano, and S. Shibata, “Terrace-microsphere lasers: spherical cavity lasers for multi-wavelength emission,” Proc. SPIE 7598, 75981E (2010).
[CrossRef]

Other

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238.
[CrossRef]

P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific, 1988).

G. P. Agrawal, “Theory of Raman amplifiers,” in Raman Amplification in Fiber Optical Communication Systems, C.Headley and G.P.Agrawal, eds. (Elsevier, 2005), pp. 33–102.

M. Saito, T. Yano, H. Segawa, and S. Shibata, “Site-selective excitation and fluorescence of Nd3+ ion-doped glasses for lasing at 900 nm band,” presented at the 3rd International Conference on Science and Technology for Advanced Ceramics, Yokohama, Japan, June 16-18, 2009.

B. O. Mysen and P. Richet, “The titanium anomalies,” in Silicate Glasses and Melts (Elsevier, 2005), pp. 357–386.

C. Schultz-Münzenberg, “The quasi-static structure of oxide glasses, in Analysis of the Composition and Structure of Glass and Glass Ceramics, H.Bach and D.Krause, eds. (Springer, 1999), pp. 141–311.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic illustration of setup for pumping terrace-microspheres.

Fig. 2
Fig. 2

(a) SEM image of terrace-microspheres, (b) schematic illustration of a terrace-microsphere.

Fig. 3
Fig. 3

Spontaneous Raman scattering spectra of BaO - SiO 2 - TiO 2 and SiO 2 glasses.

Fig. 4
Fig. 4

Fluorescence and excitation spectra of Nd 3 + -doped BaO - SiO 2 - TiO 2 glass.

Fig. 5
Fig. 5

Emission spectra of a terrace-microsphere 21 μm in diameter at various pumping wavelengths: (a)  792.7 nm , (b)  808.4 nm , (c)  819.3 nm , and (d)  830.2 nm . Pumping power was 20 mW . To make the spectral overlapping of Raman scattering and fluorescence clear, spectra of spontaneous Raman scattering (using the data of the Raman spectrum in Fig. 3) and Nd 3 + fluorescence of Nd 3 + -doped BaO - SiO 2 - TiO 2 glass are also plotted with blue and red dotted lines, respectively. The blue solid and red hollow circles show the peaks used for plotting in Fig. 7: the emission peaks due to SRS (Raman shift is around 815 cm 1 ) and fluorescence ( λ = 903.6 nm ), respectively.

Fig. 6
Fig. 6

Emission spectra of a terrace-microsphere 40 μm in diameter at various pumping wavelengths: (a)  790.2 nm , (b)  809.2 nm , (c)  820.1 nm , and (d)  831.5 nm . Pumping power is 20 mW .

Fig. 7
Fig. 7

Emission intensities of a terrace-microsphere 21 μm in diameter (same sphere as shown in Fig. 5) were plotted against pumping power at various pumping wavelengths: (a)  792.7 nm , (b)  808.4 nm , (c)  819.3 nm and (d)  830.2 nm . The blue and red curves correspond to the blue and red circles in Fig. 5: the emission peaks due to SRS (Raman shift is around 815 cm 1 ) and fluorescence ( λ = 903.6 nm ). The plots at low pumping powers are scaled up the insets to make the threshold clear.

Fig. 8
Fig. 8

Thresholds of (a) SRS (Raman shift is around 815 cm 1 ) and (b)  Nd 3 + emission at around 900 nm wavelength in the terrace-microspheres at various pumping wavelengths. Closed-circles and open-circles correspond to the terrace-microsphere shown in Fig. 5 ( d = 21 μm ) and Fig. 6 ( d = 40 μm ), respectively.

Fig. 9
Fig. 9

Normalized SRS gain plotted against pumping wavelength (pumping power was 20 mW ). Closed circles and open circles correspond to the terrace-microsphere shown in Fig. 5 ( d = 21 μm ) and Fig. 6 ( d = 40 μm ), respectively. Normalized SRS gain = [ strongest SRS peak  intensities  at  various  pumping  wavelengths ] / [ SRS peak intensity at     816 cm 1     Raman shift at     790 nm     pumping wavelength ] .

Fig. 10
Fig. 10

Schematic diagrams of SRS enhancement by Nd 3 + fluorescence. (a) Fluorescent seeding process for SRS, (b) SRS amplification process by fluorescence.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ = tan 1 ( n 1 / n 2 ) 2 1 2 π r n 2 ( n 1 / n 2 ) 2 1 .
I s = I s p × exp ( I p g s α ) L ,
I s = [ I s p + I f ( ω s ) ] × exp ( I p g s α ) L ,
g exp { ( σ Δ n 0 α ) L } ,

Metrics