Abstract

A laser induced quadrupole–quadrupole collisional energy transfer system of Xe–Kr is proposed, and the three-level laser induced collisional energy transfer (LICET) model is presented. Calculating results show that the peak of the LICET profile moves to the red and the FWHM becomes narrower, obviously with the laser field intensity increasing, while the resulting spectra is shifted in frequency toward the blue and the full width at half peak of the profile becomes larger as the relative velocity increases. The spectrum of the quadrupole–quadrupole LICET in the Xe–Kr system has a wider tunable range in an order of magnitude than the dipole–dipole LICET spectra. A cross section of 3.36×1015cm2 is obtained, which indicates that the quadrupole–quadrupole LICET process also can be an effective way to transfer energy selectively from a storage state to a target state.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Falcone and R. W. Green, “Observation of laser-induced inelastic collisions,” Phys. Rev. A 15, 1333–1335 (1977).
    [CrossRef]
  2. L. I. Gudzenko and S. I. Yakovlenko, “Radiative collision,” Sov. Phys. JETP 35, 877–881 (1972).
  3. A. Debarre, “High-resolution study of light-induced collisional energy transfer in Na-Ca mixture,” J. Phys. B 16, 431–436 (1983).
    [CrossRef]
  4. C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “High-resolution studies on laser-induced collisional-energy-transfer profiles,” Phys. Rev. A 21, 1969–1974 (1980).
    [CrossRef]
  5. F. Dorsch, S. Geltman, and P. E. Toschek, “Laser-induced collisional-energy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37, 2441–2447 (1988).
    [CrossRef] [PubMed]
  6. B. Cheron and H. Lemery, “Observation of laser-induced collisional energy transfer in a rubiduim-potassium mixture,” Opt. Commun. 42, 109–112 (1982).
    [CrossRef]
  7. W. R. Garrett, Stuart D. Henderson, and M. G. Payne, “Observation of laser-induced collisional energy transfer in xenon-argon mixtures,” J. Opt. Soc. Am. B 4, 133–137 (1987).
    [CrossRef]
  8. M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
    [CrossRef] [PubMed]
  9. S. Geltmen, “Calculations on laser-induced collisional energy transfer,” Phys. Rev. A 45, 4792–4798 (1992).
    [CrossRef]
  10. S. E. Harris, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13, 972–978 (1977).
    [CrossRef]
  11. A. Gallagher and T. Holstein, “Collision-induced absorption in atomic electronic transitions,” Phys. Rev. A 16, 2413–2431(1977).
    [CrossRef]
  12. A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisional radiative line profiles,” Phys. Rev. A 35, 3753–3757(1987).
    [CrossRef] [PubMed]
  13. A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the far-wing behavior in the spectrum of the light-induced collisional-energy-transfer process,” Phys. Rev. A 38, 2259–2273 (1988).
    [CrossRef] [PubMed]
  14. A. Bambini and S. Geltman, “Theory of strong-field light-induced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50, 5081–5091 (1994).
    [CrossRef] [PubMed]
  15. D. Y. Chen, Q. Wang, and Z. G. Ma, “Four level model of laser induced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).
  16. D. Y. Chen, Q. Wang, and Z. G. Ma, “Numerical calculation of laser-induced collisional energy transfer in Eu-Sr,” Sci. China Ser. A Math. 27, 449–460 (1997).
  17. H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
  18. W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laser-induced dipole-quadrupole collision,” Opt. Lett. 4, 265–267 (1979).
    [CrossRef] [PubMed]
  19. J. C. White, “Observation of dipole-quadrupole radiative collisional fluorescence,” Opt. Lett. 5, 239–241 (1980).
    [CrossRef] [PubMed]
  20. J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” in Intermolecular Forces, J.O.Hirschfelder, ed., Vol. 12 of Advances in Chemical Physics (Wiley, 1967), pp. 3–106.
  21. A. Bambini, M. Matera, and A. Agresti, “Strong-field effects on light-induced collisional energy transfer,” Phys. Rev. A 42, 6629–6640 (1990).
    [CrossRef] [PubMed]
  22. H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
    [CrossRef]

2008

H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

2005

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

1997

D. Y. Chen, Q. Wang, and Z. G. Ma, “Numerical calculation of laser-induced collisional energy transfer in Eu-Sr,” Sci. China Ser. A Math. 27, 449–460 (1997).

1996

D. Y. Chen, Q. Wang, and Z. G. Ma, “Four level model of laser induced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).

1994

A. Bambini and S. Geltman, “Theory of strong-field light-induced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50, 5081–5091 (1994).
[CrossRef] [PubMed]

1992

S. Geltmen, “Calculations on laser-induced collisional energy transfer,” Phys. Rev. A 45, 4792–4798 (1992).
[CrossRef]

1990

A. Bambini, M. Matera, and A. Agresti, “Strong-field effects on light-induced collisional energy transfer,” Phys. Rev. A 42, 6629–6640 (1990).
[CrossRef] [PubMed]

1988

A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the far-wing behavior in the spectrum of the light-induced collisional-energy-transfer process,” Phys. Rev. A 38, 2259–2273 (1988).
[CrossRef] [PubMed]

F. Dorsch, S. Geltman, and P. E. Toschek, “Laser-induced collisional-energy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37, 2441–2447 (1988).
[CrossRef] [PubMed]

1987

W. R. Garrett, Stuart D. Henderson, and M. G. Payne, “Observation of laser-induced collisional energy transfer in xenon-argon mixtures,” J. Opt. Soc. Am. B 4, 133–137 (1987).
[CrossRef]

M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
[CrossRef] [PubMed]

A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisional radiative line profiles,” Phys. Rev. A 35, 3753–3757(1987).
[CrossRef] [PubMed]

1983

A. Debarre, “High-resolution study of light-induced collisional energy transfer in Na-Ca mixture,” J. Phys. B 16, 431–436 (1983).
[CrossRef]

1982

B. Cheron and H. Lemery, “Observation of laser-induced collisional energy transfer in a rubiduim-potassium mixture,” Opt. Commun. 42, 109–112 (1982).
[CrossRef]

1980

C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “High-resolution studies on laser-induced collisional-energy-transfer profiles,” Phys. Rev. A 21, 1969–1974 (1980).
[CrossRef]

J. C. White, “Observation of dipole-quadrupole radiative collisional fluorescence,” Opt. Lett. 5, 239–241 (1980).
[CrossRef] [PubMed]

1979

1977

S. E. Harris, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13, 972–978 (1977).
[CrossRef]

A. Gallagher and T. Holstein, “Collision-induced absorption in atomic electronic transitions,” Phys. Rev. A 16, 2413–2431(1977).
[CrossRef]

R. W. Falcone and R. W. Green, “Observation of laser-induced inelastic collisions,” Phys. Rev. A 15, 1333–1335 (1977).
[CrossRef]

1972

L. I. Gudzenko and S. I. Yakovlenko, “Radiative collision,” Sov. Phys. JETP 35, 877–881 (1972).

Agresti, A.

A. Bambini, M. Matera, and A. Agresti, “Strong-field effects on light-induced collisional energy transfer,” Phys. Rev. A 42, 6629–6640 (1990).
[CrossRef] [PubMed]

A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the far-wing behavior in the spectrum of the light-induced collisional-energy-transfer process,” Phys. Rev. A 38, 2259–2273 (1988).
[CrossRef] [PubMed]

Arimondo, E.

M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
[CrossRef] [PubMed]

Bambini, A.

A. Bambini and S. Geltman, “Theory of strong-field light-induced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50, 5081–5091 (1994).
[CrossRef] [PubMed]

A. Bambini, M. Matera, and A. Agresti, “Strong-field effects on light-induced collisional energy transfer,” Phys. Rev. A 42, 6629–6640 (1990).
[CrossRef] [PubMed]

A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the far-wing behavior in the spectrum of the light-induced collisional-energy-transfer process,” Phys. Rev. A 38, 2259–2273 (1988).
[CrossRef] [PubMed]

A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisional radiative line profiles,” Phys. Rev. A 35, 3753–3757(1987).
[CrossRef] [PubMed]

Berman, P. R.

A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the far-wing behavior in the spectrum of the light-induced collisional-energy-transfer process,” Phys. Rev. A 38, 2259–2273 (1988).
[CrossRef] [PubMed]

A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisional radiative line profiles,” Phys. Rev. A 35, 3753–3757(1987).
[CrossRef] [PubMed]

Brechnignac, C.

C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “High-resolution studies on laser-induced collisional-energy-transfer profiles,” Phys. Rev. A 21, 1969–1974 (1980).
[CrossRef]

Buffa, R.

M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
[CrossRef] [PubMed]

Cahuzac, Ph.

C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “High-resolution studies on laser-induced collisional-energy-transfer profiles,” Phys. Rev. A 21, 1969–1974 (1980).
[CrossRef]

Cavalieri, S.

M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
[CrossRef] [PubMed]

Chen, D. Y.

H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

D. Y. Chen, Q. Wang, and Z. G. Ma, “Numerical calculation of laser-induced collisional energy transfer in Eu-Sr,” Sci. China Ser. A Math. 27, 449–460 (1997).

D. Y. Chen, Q. Wang, and Z. G. Ma, “Four level model of laser induced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).

Cheron, B.

B. Cheron and H. Lemery, “Observation of laser-induced collisional energy transfer in a rubiduim-potassium mixture,” Opt. Commun. 42, 109–112 (1982).
[CrossRef]

Debarre, A.

A. Debarre, “High-resolution study of light-induced collisional energy transfer in Na-Ca mixture,” J. Phys. B 16, 431–436 (1983).
[CrossRef]

Dorsch, F.

F. Dorsch, S. Geltman, and P. E. Toschek, “Laser-induced collisional-energy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37, 2441–2447 (1988).
[CrossRef] [PubMed]

Falcone, R. W.

R. W. Falcone and R. W. Green, “Observation of laser-induced inelastic collisions,” Phys. Rev. A 15, 1333–1335 (1977).
[CrossRef]

Fan, R. W.

H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

Gallagher, A.

A. Gallagher and T. Holstein, “Collision-induced absorption in atomic electronic transitions,” Phys. Rev. A 16, 2413–2431(1977).
[CrossRef]

Garrett, W. R.

Geltman, S.

A. Bambini and S. Geltman, “Theory of strong-field light-induced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50, 5081–5091 (1994).
[CrossRef] [PubMed]

F. Dorsch, S. Geltman, and P. E. Toschek, “Laser-induced collisional-energy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37, 2441–2447 (1988).
[CrossRef] [PubMed]

Geltmen, S.

S. Geltmen, “Calculations on laser-induced collisional energy transfer,” Phys. Rev. A 45, 4792–4798 (1992).
[CrossRef]

Green, R. W.

R. W. Falcone and R. W. Green, “Observation of laser-induced inelastic collisions,” Phys. Rev. A 15, 1333–1335 (1977).
[CrossRef]

Green, W. R.

Gudzenko, L. I.

L. I. Gudzenko and S. I. Yakovlenko, “Radiative collision,” Sov. Phys. JETP 35, 877–881 (1972).

Harris, S. E.

Henderson, Stuart D.

Hirschfelder, J. O.

J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” in Intermolecular Forces, J.O.Hirschfelder, ed., Vol. 12 of Advances in Chemical Physics (Wiley, 1967), pp. 3–106.

Holstein, T.

A. Gallagher and T. Holstein, “Collision-induced absorption in atomic electronic transitions,” Phys. Rev. A 16, 2413–2431(1977).
[CrossRef]

Lemery, H.

B. Cheron and H. Lemery, “Observation of laser-induced collisional energy transfer in a rubiduim-potassium mixture,” Opt. Commun. 42, 109–112 (1982).
[CrossRef]

Lu, Z. Z.

H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

Lukasik, J.

Ma, Z. G.

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

D. Y. Chen, Q. Wang, and Z. G. Ma, “Numerical calculation of laser-induced collisional energy transfer in Eu-Sr,” Sci. China Ser. A Math. 27, 449–460 (1997).

D. Y. Chen, Q. Wang, and Z. G. Ma, “Four level model of laser induced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).

Matera, M.

A. Bambini, M. Matera, and A. Agresti, “Strong-field effects on light-induced collisional energy transfer,” Phys. Rev. A 42, 6629–6640 (1990).
[CrossRef] [PubMed]

M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
[CrossRef] [PubMed]

Mazzoni, M.

M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
[CrossRef] [PubMed]

Meath, W. J.

J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” in Intermolecular Forces, J.O.Hirschfelder, ed., Vol. 12 of Advances in Chemical Physics (Wiley, 1967), pp. 3–106.

Payne, M. G.

Stefanel, A.

A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the far-wing behavior in the spectrum of the light-induced collisional-energy-transfer process,” Phys. Rev. A 38, 2259–2273 (1988).
[CrossRef] [PubMed]

Toschek, P. E.

F. Dorsch, S. Geltman, and P. E. Toschek, “Laser-induced collisional-energy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37, 2441–2447 (1988).
[CrossRef] [PubMed]

C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “High-resolution studies on laser-induced collisional-energy-transfer profiles,” Phys. Rev. A 21, 1969–1974 (1980).
[CrossRef]

Wang, Q.

D. Y. Chen, Q. Wang, and Z. G. Ma, “Numerical calculation of laser-induced collisional energy transfer in Eu-Sr,” Sci. China Ser. A Math. 27, 449–460 (1997).

D. Y. Chen, Q. Wang, and Z. G. Ma, “Four level model of laser induced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).

White, J. C.

Wright, M. D.

Xia, Y. Q.

H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

Xiao, P.

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

Yakovlenko, S. I.

L. I. Gudzenko and S. I. Yakovlenko, “Radiative collision,” Sov. Phys. JETP 35, 877–881 (1972).

Young, J. F.

Zhang, H. Y.

H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

Acta Opt. Sin.

D. Y. Chen, Q. Wang, and Z. G. Ma, “Four level model of laser induced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).

Acta Phys. Sin.

H. Y. Zhang, D. Y. Chen, Z. Z. Lu, R. W. Fan, and Y. Q. Xia, “Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

IEEE J. Quantum Electron.

S. E. Harris, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13, 972–978 (1977).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

A. Debarre, “High-resolution study of light-induced collisional energy transfer in Na-Ca mixture,” J. Phys. B 16, 431–436 (1983).
[CrossRef]

Opt. Commun.

B. Cheron and H. Lemery, “Observation of laser-induced collisional energy transfer in a rubiduim-potassium mixture,” Opt. Commun. 42, 109–112 (1982).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo., “Far-wing study of laser-induced collisional energy transfer,” Phys. Rev. A 36, 1471–1473 (1987).
[CrossRef] [PubMed]

S. Geltmen, “Calculations on laser-induced collisional energy transfer,” Phys. Rev. A 45, 4792–4798 (1992).
[CrossRef]

C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “High-resolution studies on laser-induced collisional-energy-transfer profiles,” Phys. Rev. A 21, 1969–1974 (1980).
[CrossRef]

F. Dorsch, S. Geltman, and P. E. Toschek, “Laser-induced collisional-energy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37, 2441–2447 (1988).
[CrossRef] [PubMed]

R. W. Falcone and R. W. Green, “Observation of laser-induced inelastic collisions,” Phys. Rev. A 15, 1333–1335 (1977).
[CrossRef]

A. Gallagher and T. Holstein, “Collision-induced absorption in atomic electronic transitions,” Phys. Rev. A 16, 2413–2431(1977).
[CrossRef]

A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisional radiative line profiles,” Phys. Rev. A 35, 3753–3757(1987).
[CrossRef] [PubMed]

A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the far-wing behavior in the spectrum of the light-induced collisional-energy-transfer process,” Phys. Rev. A 38, 2259–2273 (1988).
[CrossRef] [PubMed]

A. Bambini and S. Geltman, “Theory of strong-field light-induced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50, 5081–5091 (1994).
[CrossRef] [PubMed]

A. Bambini, M. Matera, and A. Agresti, “Strong-field effects on light-induced collisional energy transfer,” Phys. Rev. A 42, 6629–6640 (1990).
[CrossRef] [PubMed]

Sci. China Ser. A Math.

D. Y. Chen, Q. Wang, and Z. G. Ma, “Numerical calculation of laser-induced collisional energy transfer in Eu-Sr,” Sci. China Ser. A Math. 27, 449–460 (1997).

Sci. China Ser. G

H. Y. Zhang, Y. Q. Xia, D. Y. Chen, P. Xiao, R. W. Fan, and Z. G. Ma, “Numerical study of laser-induced collision process in Eu-Sr in strong field,” Sci. China Ser. G 48, 78–88 (2005).
[CrossRef]

Sov. Phys. JETP

L. I. Gudzenko and S. I. Yakovlenko, “Radiative collision,” Sov. Phys. JETP 35, 877–881 (1972).

Other

J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” in Intermolecular Forces, J.O.Hirschfelder, ed., Vol. 12 of Advances in Chemical Physics (Wiley, 1967), pp. 3–106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simplified energy levels for a LICET process.

Fig. 2
Fig. 2

LICET transition in the Xe–Kr system. The energy levels in the figure are given in cm 1 .

Fig. 3
Fig. 3

LICET spectra for Xe–Kr at various transfer laser field intensities. The relative velocity is fixed at 600 m / s .

Fig. 4
Fig. 4

Schematic adiabatic quasimolecular potential for the Xe–Kr system.

Fig. 5
Fig. 5

Shift of the peak cross section as a function of transfer laser intensity for the Xe–Kr system.

Fig. 6
Fig. 6

Peak cross section as a function of transfer laser intensity for the Xe–Kr system.

Fig. 7
Fig. 7

Collisional transition probability | a 3 ( + ) | 2 as a function of impact parameter b and the relative velocity.

Fig. 8
Fig. 8

LICET spectra at various relative velocities. The laser field intensity is fixed at 10 8 V / m .

Fig. 9
Fig. 9

Shift of the peak cross section and peak cross section as a function of relative speed for the Xe–Kr system. The laser field intensity is fixed at 10 8 V / m .

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

| 1 = | A | B * | 2 = | A * | B | 3 = | A | B * * } ,
Ψ = n = 1 3 c n ( t ) | n exp ( i ε n t / ) ,
H ( t ) = e y A E 0 cos ω t e y B E 0 cos ω t + V A B .
V AB = j = 3 V j R ( t ) j ,
V j = l = 1 j 2 m = 1 < l < F ( j , l , m ) Q l m ( A ) Q j l 1 m ( B ) .
F ( j , l , m ) = ( 1 ) j l 1 [ ( 2 j 2 ) ! ( 2 j 2 l 2 ) ! ( 2 l ) ! ] 1 2 C ( j l 1 , l , j 1 ; m , m , 0 ) = ( 1 ) j l 1 ( j 1 ) ! [ ( l m ) ! ( l + m ) ! ( j 1 l m ) ! ( j 1 l + m ) ! ] 1 2 ,
i C ˙ = H C ,
C = [ c 1 c 2 c 3 ] ,
H = [ 0 V 12 e i ω 12 t V 13 e i ( ω 13 + ω ) t V 21 e i ω 21 t 0 0 V 31 e i ( ω 31 ω ) t 0 0 ] ,
V m n = m | H ( t ) | n ,
ω m n = ( E m E n ) / .
T = [ e i ω 21 t 0 0 0 1 0 0 0 e i ( ω 32 ω ) t ] ,
i a ˙ = V a ,
a = [ a 1 a 2 a 3 ] ,
V = [ ω 21 V 12 V 13 V 21 0 0 V 31 0 ω 32 ω ] .
σ = 0 | a 3 ( b , t = ) | 2 · 2 π b · d b .
Xe ( 4 f [ 5 / 2 ] 2 2 ) + Kr ( 4 p 6 S 0 1 ) + ω ( 538.753 nm ) Xe ( 5 p 6 S 0 1 ) + Kr ( 7 d [ 7 / 2 ] 3 2 ) .
| 1 = | Xe ( 5 p 6 S 0 1 ) | Kr ( 4 p 6 S 0 1 ) | 2 = | Xe ( 4 f [ 5 / 2 ] 2 2 ) | Kr ( 5 p [ 5 / 2 ] 2 2 ) | 3 = | Xe ( 5 p 6 S 0 1 ) | Kr ( 7 d [ 7 / 2 ] 3 2 ) } .

Metrics