Abstract

We demonstrate the use of the z-scan technique for measuring the upconversion coefficient in Er:YAG. The upconversion coefficient is found to be linearly proportional to the concentration for samples of concentration 0.53.0  at.%. A fit to four samples at room temperature yields a value of Cup=(2.0±0.5)×1017cm3/s/at.%. The coefficient at liquid-nitrogen temperatures is Cup=(9.5±2.4)×1017cm3/s/at.%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μmEr3+ lasers,” J. Opt. Soc. Am. B 24, 2454-2460 (2007).
    [CrossRef]
  2. J. O. White, “Parameters for quantitative comparison of two-, three-, and four-level laser media, operating wavelengths, and temperatures,” IEEE J. Quantum Electron. 45, 1213-1220(2009).
    [CrossRef]
  3. S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
    [CrossRef]
  4. N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, “Temperature dependence of a diode-pumped cryogenic Er:YAG laser,” Opt. Express 17, 7159-7169 (2009).
    [CrossRef] [PubMed]
  5. D. K. Killinger, “Effect of phonon-assisted upconversion on 1.64 μm Er:YAG laser performance,” Quarterly Progress Rep. (Lincoln Laboratory Solid-State, 1987), Section 2.2, pp. 13-16.
  6. D. K. Killinger, “Phonon-assisted upconversion in 1.64 μm Er:YAG lasers,” in Conference on Lasers and Electro-Optics of 1987 OSA Technical Digest Series (Optical Society of America, 1987), paper THJ4.
  7. M. O. Iskandarov, A. A. Nikitichev, and A. I. Stepanov, “Quasi-two-level Er3+:Y3Al5O12 laser for the 1.6 μm range,” J. Opt. Technol. 68, 885-888 (2001).
    [CrossRef]
  8. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid state lasers,” Opt. Express 17, 11935-11943 (2009).
    [CrossRef] [PubMed]
  9. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
    [CrossRef]
  10. This value was calculated as σ=α0/Nfa, where fa=0.300, for a sample of concentration N=6.80×1019 cm−3. The unsaturated absorption coefficient was measured at 80 K to be α0=50.6 cm−1.
  11. D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
    [CrossRef]
  12. D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
    [CrossRef]

2010 (1)

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

2009 (3)

2007 (1)

2005 (1)

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

2003 (1)

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

2001 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

Allik, T. H.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

Beattie, J. A.

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Bradley, W. M.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

Chicklis, E. P.

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Clarkson, W. A.

Dinndorf, K. M.

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Dubinskii, M.

Garbuzov, D.

Gruber, J. B.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

Hutchinson, J. A.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

Iskandarov, M. O.

Killinger, D. K.

D. K. Killinger, “Effect of phonon-assisted upconversion on 1.64 μm Er:YAG laser performance,” Quarterly Progress Rep. (Lincoln Laboratory Solid-State, 1987), Section 2.2, pp. 13-16.

D. K. Killinger, “Phonon-assisted upconversion in 1.64 μm Er:YAG lasers,” in Conference on Lasers and Electro-Optics of 1987 OSA Technical Digest Series (Optical Society of America, 1987), paper THJ4.

Kim, J. W.

Kokta, M. R.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

Kudryashov, I.

Kukla, M. J.

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Mackenzie, J. I.

Merkle, L. D.

Michael, A.

Newburgh, G. A.

Nikitichev, A. A.

Perez, J. J.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

Russell, C. C.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

Sardar, D. K.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

Setzler, S.

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Shaw, M. J.

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

Stepanov, A. I.

Ter-Gabrielyan, N.

Trussell, C. W.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

Unternahrer, J. R.

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

White, J. O.

J. O. White, “Parameters for quantitative comparison of two-, three-, and four-level laser media, operating wavelengths, and temperatures,” IEEE J. Quantum Electron. 45, 1213-1220(2009).
[CrossRef]

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μmEr3+ lasers,” J. Opt. Soc. Am. B 24, 2454-2460 (2007).
[CrossRef]

Zandi, B.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. O. White, “Parameters for quantitative comparison of two-, three-, and four-level laser media, operating wavelengths, and temperatures,” IEEE J. Quantum Electron. 45, 1213-1220(2009).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

J. Appl. Phys. (2)

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+(4f11)) absorption intensities in Er3+-doped garnets,” J. Appl. Phys. 93, 2602-2607(2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

Opt. Express (2)

Proc. SPIE (1)

S. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
[CrossRef]

Other (3)

D. K. Killinger, “Effect of phonon-assisted upconversion on 1.64 μm Er:YAG laser performance,” Quarterly Progress Rep. (Lincoln Laboratory Solid-State, 1987), Section 2.2, pp. 13-16.

D. K. Killinger, “Phonon-assisted upconversion in 1.64 μm Er:YAG lasers,” in Conference on Lasers and Electro-Optics of 1987 OSA Technical Digest Series (Optical Society of America, 1987), paper THJ4.

This value was calculated as σ=α0/Nfa, where fa=0.300, for a sample of concentration N=6.80×1019 cm−3. The unsaturated absorption coefficient was measured at 80 K to be α0=50.6 cm−1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the four manifolds, the laser transition, the upconversion, and select relaxations.

Fig. 2
Fig. 2

(a) Beam radius as a function of position. (b) Transmission of a 2% Er:YAG sample at 298 K .

Fig. 3
Fig. 3

Effective absorption coefficient versus peak intensity for 1% Er:YAG at 298 K . The curves are simulations.

Fig. 4
Fig. 4

Erbium-doped YAG z-scan experimental data at 80 K at three different powers (symbols). The dotted lines represent values of C up that differ from the solid line by a factor of 2.

Fig. 5
Fig. 5

Measured upconversion coefficient (symbols) as a function of Er concentration at 80 and 298 K , along with linear fits to each. The dashed line is a linear fit to the low-concentration results of [7].

Tables (1)

Tables Icon

Table 1 Room-Temperature Relaxation Rates (Hz) Used in the Model

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N 1 d t = + I σ h ν ( f e N 2 f a N 1 ) + N 2 W 21 + N 3 W 31 + N 4 W 41 + C up N 2 2 ,
d N 2 d t = I σ h ν ( f e N 2 f a N 1 ) N 2 W 21 + N 3 W 32 + N 4 W 42 2 C up N 2 2 ,
d N 3 d t = N 4 W 43 N 3 ( W 32 + W 31 ) ,
d N 4 d t = C up N 2 2 N 4 ( W 43 + W 42 + W 41 ) .
d I d z = I σ ( f e N 2 f a N 1 ) = α I .
P ( L ) = P ( 0 ) exp ( α eff L ) ,

Metrics