Abstract

We theoretically study parametric amplification in highly birefringent optical fibers and show that large tunable optical delay or advancement can be achieved via slow and fast light propagation. We provide a clear derivation of the formula for the optical delay that originates from the imaginary part of the parametric gain. We also perform numerical simulations in both normal and anomalous dispersion regimes. In the latter case, results show that large nanosecond optical delay could, in principle, be obtained at 1550nm in a 1-km-long polarization-maintaining fiber. We further demonstrate that the optical delay and advancement rely on a group-velocity locking between the two cross-polarized signal and idler pulses.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription