Abstract

We propose and demonstrate a temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber (PCF) modal-interferometer-based microdisplacement sensor. The embedded PCF sensor has the structure of single-mode-fiber (SMF)–PCF–SMF, with a core offset at one splice joint. With the structure embedded in a cured carbon-fiber-composite-laminate-based simple-supported beam, the applied microdisplacement can be measured by monitoring its extinction ratio variation, while the extinction ratio variation is independent of the temperature variation and bending-induced strain. The sensitivity reaches 0.0024dB/μm, the measurement resolution reaches 42μm, and the dynamic measurement range is within the range of 0200Hz.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Prelle, F. Lamarque, and P. Revel, “Reflective optical sensor for long-range and high-resolution displacements,” Sens. Actuators A 127, 139–146 (2006).
    [CrossRef]
  2. A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
    [CrossRef]
  3. L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
    [CrossRef]
  4. T. Wang, S. Zheng, and Z. Yang, “High precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A 69, 134–138 (1998).
    [CrossRef]
  5. D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicosecond resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105–035108 (2009).
    [CrossRef] [PubMed]
  6. L. M. Manojlovic, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Lasers Eng. 48, 486–490 (2010).
    [CrossRef]
  7. X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
    [CrossRef]
  8. J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
    [CrossRef]
  9. D. Bo, Z. Qida, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006).
    [CrossRef] [PubMed]
  10. O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008).
    [CrossRef]
  11. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
    [CrossRef]
  12. D-H. Kim and J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490–4495 (2004).
    [CrossRef] [PubMed]
  13. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
    [CrossRef]
  14. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113(2007).
    [CrossRef]
  15. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
    [CrossRef]
  16. B. Dong, D.-P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010).
    [CrossRef]
  17. B. Dong, J. Hao, C.-Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49, 6232–6235 (2010).
    [CrossRef] [PubMed]
  18. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291–19296 (2008).
    [CrossRef]
  19. J. Hannah and M. J. Hillier, Applied Mechanics, 3rd ed.(Longmans, 1995), pp. 310–312.

2011 (1)

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

2010 (4)

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

L. M. Manojlovic, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Lasers Eng. 48, 486–490 (2010).
[CrossRef]

B. Dong, D.-P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010).
[CrossRef]

B. Dong, J. Hao, C.-Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49, 6232–6235 (2010).
[CrossRef] [PubMed]

2009 (1)

D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicosecond resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105–035108 (2009).
[CrossRef] [PubMed]

2008 (3)

B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291–19296 (2008).
[CrossRef]

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008).
[CrossRef]

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

2007 (2)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113(2007).
[CrossRef]

2006 (3)

J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
[CrossRef]

D. Bo, Z. Qida, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006).
[CrossRef] [PubMed]

C. Prelle, F. Lamarque, and P. Revel, “Reflective optical sensor for long-range and high-resolution displacements,” Sens. Actuators A 127, 139–146 (2006).
[CrossRef]

2005 (1)

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

2004 (2)

D-H. Kim and J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490–4495 (2004).
[CrossRef] [PubMed]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

1998 (1)

T. Wang, S. Zheng, and Z. Yang, “High precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A 69, 134–138 (1998).
[CrossRef]

Alayli, Y.

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

Araújo, F.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008).
[CrossRef]

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Baptista, J. M.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
[CrossRef]

Bo, D.

Büttgenbach, S.

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

Cagneau, B.

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

Chassagne, L.

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

Demonkan, M. S.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Ding, L.

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

Dong, B.

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113(2007).
[CrossRef]

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

Feng, L.

Ferreira, L.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008).
[CrossRef]

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Frazao, O.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
[CrossRef]

Frazão, O.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008).
[CrossRef]

Hannah, J.

J. Hannah and M. J. Hillier, Applied Mechanics, 3rd ed.(Longmans, 1995), pp. 310–312.

Hao, J.

Hillier, M. J.

J. Hannah and M. J. Hillier, Applied Mechanics, 3rd ed.(Longmans, 1995), pp. 310–312.

Hong, G.

Howard, L. P.

D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicosecond resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105–035108 (2009).
[CrossRef] [PubMed]

Jin, W.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Kang, J.

Khiat, A.

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

Kim, D-H.

Lamarque, F.

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

C. Prelle, F. Lamarque, and P. Revel, “Reflective optical sensor for long-range and high-resolution displacements,” Sens. Actuators A 127, 139–146 (2006).
[CrossRef]

Leester-Schädel, M.

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

Liaw, C.-Y.

Lifang, X.

Lin, B.

Lit, J. W. Y.

Liu, W.-K.

Loock, H.-P.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Lu, C.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Manojlovic, L. M.

L. M. Manojlovic, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Lasers Eng. 48, 486–490 (2010).
[CrossRef]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Ngo, N. Q.

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

Perret, L.

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

Pouille, P.

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

Pratt, J. R.

D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicosecond resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105–035108 (2009).
[CrossRef] [PubMed]

Prelle, C.

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

C. Prelle, F. Lamarque, and P. Revel, “Reflective optical sensor for long-range and high-resolution displacements,” Sens. Actuators A 127, 139–146 (2006).
[CrossRef]

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Qida, Z.

Rego, G.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
[CrossRef]

Revel, P.

C. Prelle, F. Lamarque, and P. Revel, “Reflective optical sensor for long-range and high-resolution displacements,” Sens. Actuators A 127, 139–146 (2006).
[CrossRef]

Ruaux, P.

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

Santos, J.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008).
[CrossRef]

Santos, J. L.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
[CrossRef]

Santos, S. F.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
[CrossRef]

Shuhong, L.

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113(2007).
[CrossRef]

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

Smith, D. T.

D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicosecond resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105–035108 (2009).
[CrossRef] [PubMed]

Tam, H. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113(2007).
[CrossRef]

Tian, Z.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Tjin, S. C.

Topcu, S.

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

Tuan, G.

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Wang, T.

T. Wang, S. Zheng, and Z. Yang, “High precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A 69, 134–138 (1998).
[CrossRef]

Wei, L.

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Yang, X.

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Yang, Z.

T. Wang, S. Zheng, and Z. Yang, “High precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A 69, 134–138 (1998).
[CrossRef]

Zhao, C. L.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Zhao, C.-L.

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

Zheng, S.

T. Wang, S. Zheng, and Z. Yang, “High precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A 69, 134–138 (1998).
[CrossRef]

Zhou, D.-P.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113(2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008).
[CrossRef]

Opt. Commun. (1)

J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

L. M. Manojlovic, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Lasers Eng. 48, 486–490 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicosecond resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105–035108 (2009).
[CrossRef] [PubMed]

Sens. Actuators A (4)

C. Prelle, F. Lamarque, and P. Revel, “Reflective optical sensor for long-range and high-resolution displacements,” Sens. Actuators A 127, 139–146 (2006).
[CrossRef]

A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010).
[CrossRef]

L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011).
[CrossRef]

T. Wang, S. Zheng, and Z. Yang, “High precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A 69, 134–138 (1998).
[CrossRef]

Smart Mat. Struct. (1)

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005).
[CrossRef]

Other (1)

J. Hannah and M. J. Hillier, Applied Mechanics, 3rd ed.(Longmans, 1995), pp. 310–312.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the sensor and experimental setup.

Fig. 2
Fig. 2

Transmission spectrum of the interferometer and its corresponding spatial frequency spectrum.

Fig. 3
Fig. 3

Measured ER response to displacement.

Fig. 4
Fig. 4

Measured transmission spectrum response to temperature.

Fig. 5
Fig. 5

Measured power responses to static and dynamic displacement.

Fig. 6
Fig. 6

Measured output voltage versus time graphs of the sensor under 10 and 200 Hz dynamic displacement.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 π B n L λ = N 2 π ( N   is an integer ) ,
I = I 1 + I 2 + 2 I 1 I 2 cos ( 2 π B 1 L λ ) ,
ER 10 log 10 ( 1 + I 2 / I 1 1 I 2 / I 1 ) 2 .
P λ 2 B 1 L .
ε = 12 z l 2 d ,
Δ λ λ [ 1 + ( p 1 n 2 p 2 n 2 ) / B 1 ] ε + [ ( 1 + k ) α + ( ξ 1 n 1 ξ 2 n 2 ) / B 1 ] Δ T ,

Metrics