Abstract

Rare-earth doped heavy metal germanium tellurite (NZPGT) glass fibers with lower maximum phonon energy of 793cm1 and UV-sensitivity property have been designed and fabricated. Bright and compact upconversion traces have been observed in Er3+/Yb3+ and Tm3+/Yb3+ codoped NZPGT glass fibers, which exhibit favorable flexibility and excellent thermal stability, indicating that the NZPGT glasses are a desirable candidate for fiber amplifiers. The Er3+/Yb3+ codoped NZPGT glasses present a broad emission at ~1.5μm with the FWHM of 72.7nm, and the maximum internal gain of 12.59dB with a remarkable gain coefficient of 2.38dB/cm in the C-band were achieved in a Er3+/Yb3+ codoped NZPGT glass fiber. The efficient three-photon blue and two-photon near-IR upconversion emissions of a Tm3+/Yb3+ codoped NZPGT glass fiber demonstrate that low phonon energy NZPGT glasses have promising potential applications in Tm3+ single-doped glass fibers for S-band signal amplification, and the further development of O- and U-band fiber amplifiers and lasers in Pr3+ and Ho3+ doped NZPGT glass fibers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Kuhn, P. Webels, J. Neumann, and D. Kracht, “Stabilization and power scaling of cladding pumped Er:Yb-codoped fiber amplifier via auxiliary signal at 1064 nm,” Opt. Express 17, 18304–18311 (2009).
    [Crossref] [PubMed]
  2. A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
    [Crossref] [PubMed]
  3. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett. 36, 166–168(2011).
    [Crossref] [PubMed]
  4. H. T. Bookey, J. Lousteau, A. Jha, N. Gayraud, R. R. Thomson, N. D. Psaila, H. Li, W. N. Macpherson, J. S. Barton, and A. K. Kar, “Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength,” Opt. Express 15, 17554–17561(2007).
    [Crossref] [PubMed]
  5. M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band,” Opt. Lett. 36, 2408–2410 (2011).
    [Crossref] [PubMed]
  6. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B 24, 1749–1755 (2007).
    [Crossref]
  7. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39, 4979–4984(2000).
    [Crossref]
  8. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32, 241–243 (2007).
    [Crossref] [PubMed]
  9. A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
    [Crossref]
  10. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron. 36, 201–212 (2004).
    [Crossref]
  11. H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and G. Ozen, “Spectroscopic investigation of Tm3+: TeO2‒WO3glass,” J. Lumin. 128, 1501–1506 (2008).
    [Crossref]
  12. D. A. Simpson, W. E. K. Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, and G. W. Baxter, “Visible and near infrared up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation,” Opt. Express 16, 13781–13799 (2008).
    [Crossref] [PubMed]
  13. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
    [Crossref]
  14. A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
    [Crossref]
  15. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3 μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
    [Crossref] [PubMed]
  16. G. Androz, D. Faucher, D. Gingras, and R. Vallee, “Self-pulsing dynamics of a dual-wavelength Tm3+: ZBLAN upconversion fiber laser emitting around 800 nm,” J. Opt. Soc. Am. B 24, 2907–2913 (2007).
    [Crossref]
  17. Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead–tellurium–germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
    [Crossref]
  18. Y. B. Shin, J. N. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27, 379–386 (1995).
    [Crossref]
  19. H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
    [Crossref]
  20. G. D. Maxwell and B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
    [Crossref]
  21. S. Mailis, A. Anderson, S. J. Barrington, W. S. Brocklesby, R. Greef, H. V. Rutt, R. W. Eason, N. A. Vainos, and C. Grivas, “Photosensitivity of lead germanate glass waveguides grown by pulsed laser deposition,” Opt. Lett. 23, 1751–1753 (1998).
    [Crossref]
  22. M. Takahashi, A. Sakoh, K. Ichii, Y. Tokuda, T. Yoko, and J. Nishii, “Photosensitive GeO2‒SiO2 films for ultraviolet laser writing of channel waveguides and Bragg gratings with Cr-loaded waveguide structure,” Appl. Opt. 42, 4594–4598 (2003).
    [Crossref] [PubMed]
  23. D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
    [Crossref]
  24. H. J. R. Dutton, Understanding Optical Communications(Prentice Hall, 1998).
  25. S. I. Najafi, Introduction to Glass Integrated Optics (ArtechHouse, 1992).
  26. S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite–a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
    [Crossref]
  27. D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, “Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery,” Opt. Express 18, 18997–19008 (2010).
    [Crossref] [PubMed]
  28. T. F. Xu, X. Shen, Q. H. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+ codoped tungsten-tellurite glasses,” Opt. Mater. 28, 241–245 (2006).
    [Crossref]
  29. X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+ doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
    [Crossref]
  30. Y. M. Yang, Z. P. Yang, and B. J. Chen, “Investigate on the feasibility of introducing dopants with high phonon enegy into tellurite host to enhance 1.5 μm emission efficiency,” in 2009 Symposium on Photonics and Optoelectronics (SOPO2009), pp. 292–295.
  31. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
    [Crossref]
  32. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  33. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  34. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
    [Crossref]
  35. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
    [Crossref]
  36. C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
    [Crossref]
  37. X. L. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
    [Crossref]
  38. D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
    [Crossref]
  39. G. A. Kumar, E. De la Rosa, and H. Desirena, “Radiative and non radiative spectroscopic properties of Er3+ ion in tellurite glass,” Opt. Commun. 260, 601–606 (2006).
    [Crossref]
  40. Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO‒Bi2O3‒Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999).
    [Crossref]
  41. R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
    [Crossref]
  42. S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
    [Crossref]
  43. D. L. Yang, E. Y. B. Pun, N. Q. Wang, and H. Lin, “Radiation and gain behaviors in Tm3+-doped aluminum germanate substrate glasses and thermal ion-exchanged waveguide,” J. Opt. Soc. Am. B 27, 990–996 (2010).
    [Crossref]
  44. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
    [Crossref]
  45. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  46. R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
    [Crossref]
  47. S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
    [Crossref]
  48. H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27–33 (2001).
    [Crossref]
  49. Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
    [Crossref]
  50. S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2623 (1996).
    [Crossref]
  51. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26, 357–363 (2009).
    [Crossref]
  52. A. V. Belov, E. M. Dianov, G. G. Devyatykh, V. F. Khopin, A. N. Guryanov, and Y. B. Zverev, “Optical and gain characteristics of high-concentration erbium-doped fibers on base of cesium-silicate glasses,” in Optical Fiber Communication Conference, Vol. 16–21 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper ThG1.
    [Crossref]
  53. S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
    [Crossref]
  54. B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
    [Crossref]

2011 (3)

2010 (2)

2009 (2)

2008 (2)

2007 (5)

2006 (3)

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

T. F. Xu, X. Shen, Q. H. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+ codoped tungsten-tellurite glasses,” Opt. Mater. 28, 241–245 (2006).
[Crossref]

G. A. Kumar, E. De la Rosa, and H. Desirena, “Radiative and non radiative spectroscopic properties of Er3+ ion in tellurite glass,” Opt. Commun. 260, 601–606 (2006).
[Crossref]

2004 (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron. 36, 201–212 (2004).
[Crossref]

2003 (3)

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

M. Takahashi, A. Sakoh, K. Ichii, Y. Tokuda, T. Yoko, and J. Nishii, “Photosensitive GeO2‒SiO2 films for ultraviolet laser writing of channel waveguides and Bragg gratings with Cr-loaded waveguide structure,” Appl. Opt. 42, 4594–4598 (2003).
[Crossref] [PubMed]

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[Crossref]

2002 (4)

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
[Crossref]

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite–a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[Crossref]

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
[Crossref]

2001 (4)

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+ doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27–33 (2001).
[Crossref]

2000 (1)

1999 (1)

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO‒Bi2O3‒Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999).
[Crossref]

1998 (4)

S. Mailis, A. Anderson, S. J. Barrington, W. S. Brocklesby, R. Greef, H. V. Rutt, R. W. Eason, N. A. Vainos, and C. Grivas, “Photosensitivity of lead germanate glass waveguides grown by pulsed laser deposition,” Opt. Lett. 23, 1751–1753 (1998).
[Crossref]

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[Crossref] [PubMed]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

1997 (1)

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead–tellurium–germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[Crossref]

1996 (2)

1995 (2)

Y. B. Shin, J. N. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27, 379–386 (1995).
[Crossref]

G. D. Maxwell and B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

1994 (1)

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

1993 (1)

X. L. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

1983 (1)

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[Crossref]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

1968 (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Ainslie, B. J.

G. D. Maxwell and B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

Ajo, D.

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

Anderson, A.

Androz, G.

Barrington, S. J.

Barton, J. S.

Baxter, G. W.

Belov, A. V.

A. V. Belov, E. M. Dianov, G. G. Devyatykh, V. F. Khopin, A. N. Guryanov, and Y. B. Zverev, “Optical and gain characteristics of high-concentration erbium-doped fibers on base of cesium-silicate glasses,” in Optical Fiber Communication Conference, Vol. 16–21 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper ThG1.
[Crossref]

Bennetts, S.

Bettinelli, M.

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

Blanc, W.

Bookey, H. T.

Brocklesby, W. S.

Bueno, L. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Bufetov, I. A.

Cai, Z. P.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Cankaya, H.

H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and G. Ozen, “Spectroscopic investigation of Tm3+: TeO2‒WO3glass,” J. Lumin. 128, 1501–1506 (2008).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]

Chardon, A.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Chen, B. J.

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26, 357–363 (2009).
[Crossref]

Y. M. Yang, Z. P. Yang, and B. J. Chen, “Investigate on the feasibility of introducing dopants with high phonon enegy into tellurite host to enhance 1.5 μm emission efficiency,” in 2009 Symposium on Photonics and Optoelectronics (SOPO2009), pp. 292–295.

Choi, Y. G.

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO‒Bi2O3‒Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999).
[Crossref]

Cizmeciyan, M. N.

H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and G. Ozen, “Spectroscopic investigation of Tm3+: TeO2‒WO3glass,” J. Lumin. 128, 1501–1506 (2008).
[Crossref]

Collins, S. F.

da Costa, E. B.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

da Silva, E. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Dai, S. X.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

de Camargo, A. S. S.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
[Crossref]

De la Rosa, E.

G. A. Kumar, E. De la Rosa, and H. Desirena, “Radiative and non radiative spectroscopic properties of Er3+ ion in tellurite glass,” Opt. Commun. 260, 601–606 (2006).
[Crossref]

de Oliveira, S. L.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
[Crossref]

de Sousa, D. F.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
[Crossref]

Desirena, H.

G. A. Kumar, E. De la Rosa, and H. Desirena, “Radiative and non radiative spectroscopic properties of Er3+ ion in tellurite glass,” Opt. Commun. 260, 601–606 (2006).
[Crossref]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

Devyatykh, G. G.

A. V. Belov, E. M. Dianov, G. G. Devyatykh, V. F. Khopin, A. N. Guryanov, and Y. B. Zverev, “Optical and gain characteristics of high-concentration erbium-doped fibers on base of cesium-silicate glasses,” in Optical Fiber Communication Conference, Vol. 16–21 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper ThG1.
[Crossref]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Dianov, E. M.

do Nascimento, R. F.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

do Nascimento, V. B.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Duan, Z.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Dussardier, B.

Dutton, H. J. R.

H. J. R. Dutton, Understanding Optical Communications(Prentice Hall, 1998).

Eason, R. W.

Faucher, D.

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron. 36, 201–212 (2004).
[Crossref]

Feng, X.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+ doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

Feron, P.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Ferrand, B.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[Crossref]

Firstov, S. V.

Firstova, E. G.

Gao, R.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[Crossref] [PubMed]

Gao, Y.

T. F. Xu, X. Shen, Q. H. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+ codoped tungsten-tellurite glasses,” Opt. Mater. 28, 241–245 (2006).
[Crossref]

Garito, A. F.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[Crossref] [PubMed]

Gatterer, K.

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

Gayraud, N.

Gibbs, W. E. K.

Gingras, D.

Gong, H.

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

Greef, R.

Grivas, C.

Guryanov, A. N.

M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band,” Opt. Lett. 36, 2408–2410 (2011).
[Crossref] [PubMed]

A. V. Belov, E. M. Dianov, G. G. Devyatykh, V. F. Khopin, A. N. Guryanov, and Y. B. Zverev, “Optical and gain characteristics of high-concentration erbium-doped fibers on base of cesium-silicate glasses,” in Optical Fiber Communication Conference, Vol. 16–21 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper ThG1.
[Crossref]

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+ doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

Hanna, D. C.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Hemming, A.

Heo, J.

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO‒Bi2O3‒Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999).
[Crossref]

Y. B. Shin, J. N. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27, 379–386 (1995).
[Crossref]

Hewak, D. W.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
[Crossref]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3 μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
[Crossref] [PubMed]

Honkanen, S.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Hu, L. L.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

Huang, L.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[Crossref]

Hwang, B.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Hwang, B. C.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

Ichii, K.

Izumitani, T.

X. L. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Jackson, S. D.

Jang, J. N.

Y. B. Shin, J. N. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27, 379–386 (1995).
[Crossref]

Jha, A.

H. T. Bookey, J. Lousteau, A. Jha, N. Gayraud, R. R. Thomson, N. D. Psaila, H. Li, W. N. Macpherson, J. S. Barton, and A. K. Kar, “Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength,” Opt. Express 15, 17554–17561(2007).
[Crossref] [PubMed]

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[Crossref]

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite–a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[Crossref]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39, 4979–4984(2000).
[Crossref]

Jiang, S.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Jiang, S. B.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

Jiang, Z.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Jiang, Z. H.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

Jorgensen, C. K.

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[Crossref]

Joshi, P.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Kalaycioglu, H.

H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and G. Ozen, “Spectroscopic investigation of Tm3+: TeO2‒WO3glass,” J. Lumin. 128, 1501–1506 (2008).
[Crossref]

Kanamori, T.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Kar, A. K.

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron. 36, 201–212 (2004).
[Crossref]

Khopin, V. F.

M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band,” Opt. Lett. 36, 2408–2410 (2011).
[Crossref] [PubMed]

A. V. Belov, E. M. Dianov, G. G. Devyatykh, V. F. Khopin, A. N. Guryanov, and Y. B. Zverev, “Optical and gain characteristics of high-concentration erbium-doped fibers on base of cesium-silicate glasses,” in Optical Fiber Communication Conference, Vol. 16–21 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper ThG1.
[Crossref]

Kim, K. H.

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO‒Bi2O3‒Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999).
[Crossref]

Kobayashi, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Kracht, D.

Kuhn, V.

Kumar, G. A.

G. A. Kumar, E. De la Rosa, and H. Desirena, “Radiative and non radiative spectroscopic properties of Er3+ ion in tellurite glass,” Opt. Commun. 260, 601–606 (2006).
[Crossref]

Lancaster, D. G.

Laporta, P.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2623 (1996).
[Crossref]

Levchenko, A. E.

Li, H.

Liao, G. H.

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Liao, M.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Lin, H.

Liu, X. R.

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27–33 (2001).
[Crossref]

Lousteau, J.

Lucas, J.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

Luo, T.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Macpherson, W. N.

Mailis, S.

Maxwell, G. D.

G. D. Maxwell and B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

Medvedkov, O. I.

Melkumov, M. A.

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Monnom, G.

Morgan, S. H.

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead–tellurium–germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[Crossref]

Mori, A.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Morrell, M.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

Myers, M.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Naftaly, M.

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite–a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[Crossref]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39, 4979–4984(2000).
[Crossref]

Najafi, S. I.

S. I. Najafi, Introduction to Glass Integrated Optics (ArtechHouse, 1992).

Neumann, J.

Nie, Q. H.

T. F. Xu, X. Shen, Q. H. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+ codoped tungsten-tellurite glasses,” Opt. Mater. 28, 241–245 (2006).
[Crossref]

Nishida, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Nishii, J.

Nunes, L. A. O.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
[Crossref]

Nunzi-Conti, G.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Ohishi, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Oikawa, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Ono, H.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Ozen, G.

H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and G. Ozen, “Spectroscopic investigation of Tm3+: TeO2‒WO3glass,” J. Lumin. 128, 1501–1506 (2008).
[Crossref]

Pan, Z.

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead–tellurium–germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[Crossref]

Payne, D. N.

Pelenc, D.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Peng, M. Y.

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Peterka, P.

Peyghambarian, N.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Psaila, N. D.

Pun, E. Y. B.

Quimby, R. S.

R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
[Crossref]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]

Rameix, A.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Reisfeld, F.

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[Crossref]

Rhonehouse, D.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Rolli, R.

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

Rutt, H. V.

Sabella, A.

Sakoh, A.

Samson, B. N.

Schweizer, T.

Semenov, S. L.

Seneschal, K.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

Sennaroglu, A.

H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and G. Ozen, “Spectroscopic investigation of Tm3+: TeO2‒WO3glass,” J. Lumin. 128, 1501–1506 (2008).
[Crossref]

Shen, S.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[Crossref]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39, 4979–4984(2000).
[Crossref]

Shen, S. X.

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite–a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[Crossref]

Shen, X.

T. F. Xu, X. Shen, Q. H. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+ codoped tungsten-tellurite glasses,” Opt. Mater. 28, 241–245 (2006).
[Crossref]

Shepherd, D. P.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Shi, D. M.

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Shin, Y. B.

Y. B. Shin, J. N. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27, 379–386 (1995).
[Crossref]

Shubin, A. V.

Simpson, D. A.

Smektala, F.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

Sorbello, G.

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

Speghini, A.

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

Stephan, G. M.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Sun, H. T.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Svelto, C.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2623 (1996).
[Crossref]

Taccheo, S.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2623 (1996).
[Crossref]

Takahashi, M.

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+ doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

Thomson, R. R.

Thony, P.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Tokuda, Y.

Tropper, A. C.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Vainos, N. A.

Vallee, R.

Vel’miskin, V. V.

Wachtler, M.

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

Wang, J.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[Crossref] [PubMed]

Wang, N. Q.

Wang, X. F.

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Warburton, T. J.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

Webels, P.

Xu, H. Y.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Xu, S. Q.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

Xu, T. F.

T. F. Xu, X. Shen, Q. H. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+ codoped tungsten-tellurite glasses,” Opt. Mater. 28, 241–245 (2006).
[Crossref]

Yamada, M.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

Yang, D. L.

Yang, J. H.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

Yang, Y. M.

Y. M. Yang, Z. P. Yang, and B. J. Chen, “Investigate on the feasibility of introducing dopants with high phonon enegy into tellurite host to enhance 1.5 μm emission efficiency,” in 2009 Symposium on Photonics and Optoelectronics (SOPO2009), pp. 292–295.

Yang, Z. M.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

Yang, Z. P.

Y. M. Yang, Z. P. Yang, and B. J. Chen, “Investigate on the feasibility of introducing dopants with high phonon enegy into tellurite host to enhance 1.5 μm emission efficiency,” in 2009 Symposium on Photonics and Optoelectronics (SOPO2009), pp. 292–295.

Yoko, T.

Yu, C.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Zhang, J.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Zhang, Q. Y.

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Zhao, C.

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Zhao, X.

Zhao, Y. G.

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Zhou, G.

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Zou, X. L.

X. L. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Zverev, Y. B.

A. V. Belov, E. M. Dianov, G. G. Devyatykh, V. F. Khopin, A. N. Guryanov, and Y. B. Zverev, “Optical and gain characteristics of high-concentration erbium-doped fibers on base of cesium-silicate glasses,” in Optical Fiber Communication Conference, Vol. 16–21 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper ThG1.
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007).
[Crossref]

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2623 (1996).
[Crossref]

Electron. Lett. (2)

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[Crossref]

G. D. Maxwell and B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]

B. C. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 197–199 (2001).
[Crossref]

J. Alloys Compd. (1)

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361, 313–319(2003).
[Crossref]

J. Am. Ceram. Soc. (2)

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO‒Bi2O3‒Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+ doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

J. Appl. Phys. (2)

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651–7653 (1994).
[Crossref]

R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
[Crossref]

J. Chem. Phys. (3)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]

J. Less-Common Met. (1)

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[Crossref]

J. Lumin. (1)

H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and G. Ozen, “Spectroscopic investigation of Tm3+: TeO2‒WO3glass,” J. Lumin. 128, 1501–1506 (2008).
[Crossref]

J. Non-Cryst. Solids (3)

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead–tellurium–germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[Crossref]

X. L. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27–33 (2001).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Condens. Matter (1)

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495–9505 (2002).
[Crossref]

Opt. Commun. (3)

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite–a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[Crossref]

G. A. Kumar, E. De la Rosa, and H. Desirena, “Radiative and non radiative spectroscopic properties of Er3+ ion in tellurite glass,” Opt. Commun. 260, 601–606 (2006).
[Crossref]

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Opt. Eng. (1)

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. (1)

T. F. Xu, X. Shen, Q. H. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+ codoped tungsten-tellurite glasses,” Opt. Mater. 28, 241–245 (2006).
[Crossref]

Opt. Quantum Electron. (2)

Y. B. Shin, J. N. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27, 379–386 (1995).
[Crossref]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron. 36, 201–212 (2004).
[Crossref]

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

Phys. Rev. B (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Physica B (1)

D. M. Shi, Y. G. Zhao, X. F. Wang, G. H. Liao, C. Zhao, M. Y. Peng, and Q. Y. Zhang, “Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses,” Physica B 406, 628–632 (2011).
[Crossref]

Science (1)

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[Crossref] [PubMed]

Spectrochim. Acta Part A (1)

H. T. Sun, Z. Duan, G. Zhou, C. Yu, M. Liao, L. L. Hu, J. Zhang, and Z. Jiang, “Structural and up-conversion luminescence properties in Tm3+/Yb3+-codoped heavy metal oxide–halide glasses,” Spectrochim. Acta Part A 63, 149–153 (2006).
[Crossref]

Spectrochim. Acta, Part A (1)

R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, and D. Ajo, “Optical spectroscopy of lanthanide ions in ZnO‒TeO2 glasses,” Spectrochim. Acta, Part A 57, 2009–2017 (2001).
[Crossref]

Other (5)

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

A. V. Belov, E. M. Dianov, G. G. Devyatykh, V. F. Khopin, A. N. Guryanov, and Y. B. Zverev, “Optical and gain characteristics of high-concentration erbium-doped fibers on base of cesium-silicate glasses,” in Optical Fiber Communication Conference, Vol. 16–21 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper ThG1.
[Crossref]

Y. M. Yang, Z. P. Yang, and B. J. Chen, “Investigate on the feasibility of introducing dopants with high phonon enegy into tellurite host to enhance 1.5 μm emission efficiency,” in 2009 Symposium on Photonics and Optoelectronics (SOPO2009), pp. 292–295.

H. J. R. Dutton, Understanding Optical Communications(Prentice Hall, 1998).

S. I. Najafi, Introduction to Glass Integrated Optics (ArtechHouse, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

DTA curves of the 1   wt. % Er 2 O 3 and 2   wt. % Yb 2 O 3 codoped NZPGT core (solid curve) and cladding (dotted curve) glasses.

Fig. 2
Fig. 2

Upconversion emission spectrum of Tm 3 + / Yb 3 + codoped NZPGT glasses under the excitation of a 974 nm wavelength and 504 mW pump power. Inserted photograph: upconversion fluorescence transmission in Tm 3 + / Yb 3 + codoped NZPGT glass fiber when a 980 nm single-mode laser beam was coupled into the input end of the fiber.

Fig. 3
Fig. 3

Fluorescence transmission in the Er 3 + / Yb 3 + codoped NZPGT glass fiber when a 980 nm single-mode laser beam was coupled into the input end of the fiber.

Fig. 4
Fig. 4

(a) Surface picture of the Er 3 + / Yb 3 + codoped NZPGT glass fiber. (b) Cross-section picture of the Er 3 + / Yb 3 + codoped NZPGT glass fiber.

Fig. 5
Fig. 5

Absorption spectrum of the 1   wt. % Er 2 O 3 and 2   wt. % Yb 2 O 3 codoped NZPGT glasses.

Fig. 6
Fig. 6

(a)  1.535 μm IR emission spectrum of the Er 3 + / Yb 3 + codoped NZPGT glasses under a 980 nm wavelength excitation. (b) Fluorescence decay curve for the 1.535 μm emission of Er 3 + in the NZPGT glasses.

Fig. 7
Fig. 7

Absorption (dotted curve) and emission cross-section (solid curve) profiles of Er 3 + in the NZPGT glasses.

Fig. 8
Fig. 8

Calculated gain coefficient spectra of the I 13 / 2 4 I 15 / 2 4 transition for various values of population inversion.

Fig. 9
Fig. 9

Relative gain (signal enhancement) versus signal wavelength in a 5.3 cm long Er 3 + / Yb 3 + codoped NZPGT glass fiber.

Fig. 10
Fig. 10

Total losses in a 5.3 cm long Er 3 + / Yb 3 + codoped NZPGT glass fiber.

Fig. 11
Fig. 11

Internal gain versus signal wavelength under 457.1 mW incident pump power in a 5.3 cm long Er 3 + / Yb 3 + codoped NZPGT glass fiber.

Fig. 12
Fig. 12

Comparision of gain coefficients in (a)  Er 3 + doped phosphate [54], (b) silicate [52], (c) tellurite [53], and (d) NZPGT glass fibers.

Tables (1)

Tables Icon

Table 1 Predicted Spontaneous Emission Probabilities, Branching Ratios, and Radiative Lifetimes of E r 3 + in NZPGT Glasses

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 2 · ( n core n cladding ) n core + n cladding × 100 % ,
NA = n core 2 n cladding 2 .
V = π d λ n core 2 n cladding 2 = π d λ NA ,
σ a ( ν ) = 2.303 E ( ν ) / N 0 d ,
σ e ( ν ) = σ a ( ν ) exp { h ( ε ν ) k T } ,
G ( λ , p ) = 10 log 10 exp [ N ( p σ e ( λ ) ( 1 p ) σ a ( λ ) ) L ] ,
G R = 10 log 10 [ ( P Sig ( PumpOn ) P ASE ) / P Sig ( PumpOff ) ] ,
G INT = G R α P α A ,

Metrics