Abstract

We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR=4.0±2×1014mW1.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
    [CrossRef]
  2. A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).
    [CrossRef]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
    [CrossRef]
  4. J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
    [CrossRef]
  5. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
    [CrossRef]
  6. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22, 687–693 (2005).
    [CrossRef]
  7. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [CrossRef] [PubMed]
  8. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzu, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett. 34, 2015–2017 (2009).
    [CrossRef] [PubMed]
  9. J. Hu, C. R. Menuyk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [CrossRef] [PubMed]
  10. P. Garidel and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
    [CrossRef] [PubMed]
  11. G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
    [CrossRef]
  12. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
    [CrossRef]
  13. T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
    [CrossRef]
  14. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett. 20, 31–33 (1995).
    [CrossRef] [PubMed]
  15. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [CrossRef]
  16. D. Mahgerefteh, D. L. Butler, J. Goldhar, B. Rosenberg, and G. L. Burdge, “Technique for measurement of the Raman gain coefficient in optical fibers,” Opt. Lett. 21, 2026–2028 (1996).
    [CrossRef] [PubMed]
  17. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3chalcogenide glass fiber,” Opt. Express 16, 18524–18534 (2008).
    [CrossRef] [PubMed]
  18. A. Saïssy, J. Botineau, and L. Macon, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
    [CrossRef]
  19. A. Yariv, Quantum Electronics (Wiley, 1975).
  20. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123(2007).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzu, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett. 34, 2015–2017 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

P. Garidel and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef] [PubMed]

J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123(2007).
[CrossRef] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

2002 (1)

M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

1996 (1)

1995 (1)

1993 (1)

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

1985 (1)

A. Saïssy, J. Botineau, and L. Macon, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

1984 (1)

A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).
[CrossRef]

1973 (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Aggarwal, I. D.

Boese, M.

P. Garidel and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef] [PubMed]

Botineau, J.

A. Saïssy, J. Botineau, and L. Macon, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Bourayou, R.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Brawley, G.

Brown, S. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

Burdge, G. L.

Butler, D. L.

Chaudhari, C.

Chraplyvy, A. R.

A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Cordeiro, C. M. B.

Cronin-Golomb, M.

Domachuk, P.

Dougherty, D. J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Eggleton, B. J.

Eislöffel, J.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Garidel, P.

P. Garidel and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

George, A. K.

Goldhar, J.

Hatzes, A. P.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Haus, H. A.

Hodelin, J.

Hu, J.

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Ippen, E. P.

Islam, M.

M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

Iwashita, H.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Jenkins, C. A.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Kärtner, F. X.

Kasparian, J.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Keller, U.

Kito, C.

Knight, J. C.

Laegsgaard, J.

Laux, U.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Lehmann, H.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Lenz, G.

Liao, M.

Lin, C.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

Lykke, K. R.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

Macon, L.

A. Saïssy, J. Botineau, and L. Macon, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Mahgerefteh, D.

Mejean, G.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Menuyk, C. R.

Mizunami, T.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Moss, D. J.

Ohishi, Y.

Omenetto, F. G.

Paschotta, R.

Qin, G.

Rodriguez, M.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Rosenberg, B.

Saïssy, A.

A. Saïssy, J. Botineau, and L. Macon, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Salmon, E.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Sanghera, J.

Sanghera, J. S.

Sauerbrey, R.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Schenkel, B.

Scholz, A.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Shaw, L. B.

Slusher, R. E.

Smith, A. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

Stecklum, B.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Stolen, R. H.

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Suzu, T.

Takagi, K.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Tuniz, A.

Wang, A.

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Wolchover, N. A.

Wolf, J.-P.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Woodward, J. T.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

Wöste, L.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Yan, X.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1975).

Yu, J.

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Appl. Phys. B (2)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

G. Mejean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Electron. Lett. (1)

A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Lett. (1)

A. Saïssy, J. Botineau, and L. Macon, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Metrologia (1)

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[CrossRef]

Microsc. Res. Tech. (1)

P. Garidel and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Other (1)

A. Yariv, Quantum Electronics (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup for measuring the gain of the ZBLAN fiber.

Fig. 2
Fig. 2

Raman gain spectrum of the ZBLAN fiber. The points represent the experimental points. The black (lower) curve is a fitted curve consisting of two Gaussian functions (see text for details). The red (middle) curve shows the scaled spontaneous scattering spectrum from the work of Saïssy et al. [18]. The blue (upper) curve shows the gain spectrum of silica for comparison [12].

Fig. 3
Fig. 3

Stimulated Raman gain as a function of the peak pump power. The points represent the experimentally measured values for a Stokes shift of 580 cm 1 . The full line is a linear fit. The slope of the curve corresponds to a material gain of g R = 4.0 × 10 14 m W 1 .

Fig. 4
Fig. 4

Raman gain shown as function of the delay between the pump and the probe. The top part of the figure shows the delay dependence at the peak Stokes shift corresponding to a horizontal slice indicated by the dotted line through the contour plot.

Fig. 5
Fig. 5

Raman gain retrieved from the simulations and the Raman gain spectrum input into the simulation (black curve) for zero delay and for a delay of 1 and 1 ps . The pump peak power for this simulation is 500 W .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g A ( ω ) = ln ( P pr ( ω ) P pr 0 ( ω ) ) ,
g R = g A I pu L eff ,

Metrics