Abstract

We show that the resonance wavelength of silicon-on-insulator ring resonators can be tuned when a top cladding of liquid crystal is present. In-plane strip electrodes are used to generate an electric field that reorients the liquid crystal director in the plane parallel to the chip surface. This causes the resonance wavelength to shift toward longer wavelengths. The magnitude of this shift is about 1nm, which is twice as large as previously reported shifts. The experimental results are verified extensively with our simulation tools, where a calculation of the director orientation is combined with a fully anisotropic mode solver. From this, we get a clear view of the mechanism behind the tuning.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
    [CrossRef]
  2. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
    [CrossRef]
  3. G. H. Haertlin and C. E. Land, “Hot-pressed (PB,LA)(ZR,TI)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–11 (1971).
    [CrossRef]
  4. A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in liquid crystals on a silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
    [CrossRef]
  5. V. G. Chigrinov, L. Zhou, A. A. Muravsky, and A. W. O. Poon, “Electrically tunable microresonators using photoaligned liquid crystals,” U.S. Patent 2007/0258677 A1 (8 November 2007).
  6. B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
    [CrossRef]
  7. W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
    [CrossRef] [PubMed]
  8. C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
    [CrossRef]
  9. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).
  10. J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
    [CrossRef]
  11. H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517(2005).
    [CrossRef]
  12. B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
    [CrossRef]
  13. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
    [CrossRef] [PubMed]
  14. E. Gros and L. Dupont, “Beam deflector using double-refraction in ferroelectric liquid crystal waveguides,” Ferroelectrics 246, 219–226 (2000).
    [CrossRef]
  15. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
    [CrossRef]
  16. J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of a nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
    [CrossRef]
  17. J. Beeckman, R. James, F. A. Fernández, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” J. Lightwave Technol. 27, 3812–3819 (2009).
    [CrossRef]
  18. R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-element modeling of liquid crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
    [CrossRef]

2009 (3)

2007 (2)

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in liquid crystals on a silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

2006 (2)

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of a nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-element modeling of liquid crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[CrossRef]

2005 (2)

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517(2005).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
[CrossRef]

2004 (2)

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

2003 (1)

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
[CrossRef]

2000 (2)

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

E. Gros and L. Dupont, “Beam deflector using double-refraction in ferroelectric liquid crystal waveguides,” Ferroelectrics 246, 219–226 (2000).
[CrossRef]

1971 (1)

G. H. Haertlin and C. E. Land, “Hot-pressed (PB,LA)(ZR,TI)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–11 (1971).
[CrossRef]

Assanto, G.

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in liquid crystals on a silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

Baets, R.

W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
[CrossRef] [PubMed]

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517(2005).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Barwicz, T.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Beccherelli, R.

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
[CrossRef]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Beeckman, J.

J. Beeckman, R. James, F. A. Fernández, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” J. Lightwave Technol. 27, 3812–3819 (2009).
[CrossRef]

W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
[CrossRef] [PubMed]

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of a nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
[CrossRef]

Bellini, B.

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
[CrossRef]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Brett, P.

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

Bryan-Brown, G.

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

Cambournac, C.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
[CrossRef]

Chigrinov, V. G.

V. G. Chigrinov, L. Zhou, A. A. Muravsky, and A. W. O. Poon, “Electrically tunable microresonators using photoaligned liquid crystals,” U.S. Patent 2007/0258677 A1 (8 November 2007).

d’Havé, K.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

Dahlem, M. S.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Dalton, L.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
[CrossRef]

Day, S. E.

R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-element modeling of liquid crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[CrossRef]

De Cort, W.

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).

Desimpel, C.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

Desmet, H.

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517(2005).
[CrossRef]

Di Falco, A.

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in liquid crystals on a silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Dupont, L.

E. Gros and L. Dupont, “Beam deflector using double-refraction in ferroelectric liquid crystal waveguides,” Ferroelectrics 246, 219–226 (2000).
[CrossRef]

Fernandez, F. A.

W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
[CrossRef] [PubMed]

R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-element modeling of liquid crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[CrossRef]

Fernández, F. A.

Gan, F.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Graham, A.

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

Gros, E.

E. Gros and L. Dupont, “Beam deflector using double-refraction in ferroelectric liquid crystal waveguides,” Ferroelectrics 246, 219–226 (2000).
[CrossRef]

Gunn, C.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
[CrossRef]

Haelterman, M.

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of a nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
[CrossRef]

Haertlin, G. H.

G. H. Haertlin and C. E. Land, “Hot-pressed (PB,LA)(ZR,TI)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–11 (1971).
[CrossRef]

Holzwarth, C. W.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Hughes, J.

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

Hutsebaut, X.

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of a nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
[CrossRef]

Ippen, E. P.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

James, R.

Jones, J. C.

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

Kartner, F. X.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Land, C. E.

G. H. Haertlin and C. E. Land, “Hot-pressed (PB,LA)(ZR,TI)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–11 (1971).
[CrossRef]

Lawson, R.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
[CrossRef]

Luysaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Maune, B.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
[CrossRef]

Muravsky, A. A.

V. G. Chigrinov, L. Zhou, A. A. Muravsky, and A. W. O. Poon, “Electrically tunable microresonators using photoaligned liquid crystals,” U.S. Patent 2007/0258677 A1 (8 November 2007).

Neyts, K.

W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
[CrossRef] [PubMed]

J. Beeckman, R. James, F. A. Fernández, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” J. Lightwave Technol. 27, 3812–3819 (2009).
[CrossRef]

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of a nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
[CrossRef]

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517(2005).
[CrossRef]

Poon, A. W. O.

V. G. Chigrinov, L. Zhou, A. A. Muravsky, and A. W. O. Poon, “Electrically tunable microresonators using photoaligned liquid crystals,” U.S. Patent 2007/0258677 A1 (8 November 2007).

Popovic, M. A.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).

Rakich, P. T.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Rudquist, P.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

Scherer, A.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
[CrossRef]

Smith, H. I.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Van Thourhout, D.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Vanbrabant, P. J. M.

Verstuyft, S.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Willman, E.

R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-element modeling of liquid crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[CrossRef]

Wood, E.

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Zhou, L.

V. G. Chigrinov, L. Zhou, A. A. Muravsky, and A. W. O. Poon, “Electrically tunable microresonators using photoaligned liquid crystals,” U.S. Patent 2007/0258677 A1 (8 November 2007).

Appl. Phys. Lett. (1)

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689–4691(2003).
[CrossRef]

Ferroelectrics (1)

E. Gros and L. Dupont, “Beam deflector using double-refraction in ferroelectric liquid crystal waveguides,” Ferroelectrics 246, 219–226 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luysaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

IEEE Trans. Electron Devices (2)

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. d’Havé, and P. Rudquist, “Realization of a four-electrode liquid crystal device with full in-plane director rotation,” IEEE Trans. Electron Devices 54, 1295–1300 (2007).
[CrossRef]

R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-element modeling of liquid crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. H. Haertlin and C. E. Land, “Hot-pressed (PB,LA)(ZR,TI)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–11 (1971).
[CrossRef]

J. Appl. Phys. (1)

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517(2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D (1)

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
[CrossRef]

Opt. Commun. (1)

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in liquid crystals on a silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106(2005).
[CrossRef]

Opto-Electron. Rev. (1)

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of a nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

Proc. SPIE (1)

J. C. Jones, G. Bryan-Brown, E. Wood, A. Graham, P. Brett, and J. Hughes, “Novel bistable liquid crystal displays based on grating alignment,” Proc. SPIE 84–93 (2000).
[CrossRef]

Other (3)

V. G. Chigrinov, L. Zhou, A. A. Muravsky, and A. W. O. Poon, “Electrically tunable microresonators using photoaligned liquid crystals,” U.S. Patent 2007/0258677 A1 (8 November 2007).

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching, 2007 (IEEE, 2007), pp. 67–68.
[CrossRef]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of a device consisting of an SOI substrate with LC cladding, sealed off by a glass plate with finger electrodes and alignment layer.

Fig. 2
Fig. 2

Schematic top view of the finger electrode structure. On the right side, a schematic view of a ring resonator between two interdigital electrodes is shown.

Fig. 3
Fig. 3

Left: Image of a ring resonator with LC cladding, no voltage applied. The straight waveguide is indicated in gray. Right: Schematic view of the director orientation over the structure. The orientation of the polarizer (P), analyzer (A), and rubbing (R) are indicated in the top left corner.

Fig. 4
Fig. 4

Left: Image of a ring resonator with LC cladding, with 80 V between the fingers. The straight waveguide is indicated in gray. The region between the fingers (which remain dark) becomes bright as the molecules twist. Right: Schematic view of the director orientation over the structure. The orientation of the polarizer (P), analyzer (A), and rubbing (R) are indicated in the top left corner.

Fig. 5
Fig. 5

The resonance dips shift toward longer wavelengths for increasing voltages.

Fig. 6
Fig. 6

When we trace the resonance wavelength for increasing voltages, we find a curve with a threshold value and a saturation effect for high voltages.

Fig. 7
Fig. 7

When there is no voltage applied, the molecules align parallel to the waveguide. With the electric field present, the molecules reorient in the plane parallel to the surface to align along the field lines perpendicular to the waveguide.

Fig. 8
Fig. 8

We compare the effective index of the waveguide mode for different LC orientations. From left to right: LC oriented along x, y, and z axes, uniform refractive index equal to the ordinary refractive index of the LC, and uniform refractive index equal to the extraordinary refractive index of the LC.

Fig. 9
Fig. 9

We simulate the director orientation of the LC cladding on top of the waveguide in the presence of an electric field. The results are imported in the mode solver.

Fig. 10
Fig. 10

With our mode solver, we can calculate the x, y, and z polarized fields of the light. We present here the normalized fields along a horizontal cut through the waveguide (see dotted line in Fig. 1).

Fig. 11
Fig. 11

Simulated resonance wavelength for increasing voltages. Three different values for the anchoring are used. For lower values of the anchoring on the surface, the tuning range is wider, and the saturation appears at lower voltages.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff / n g = Δ λ / λ ,

Metrics