Abstract

A comprehensive experimental analysis of spatiotemporal coupling effects inherent to the acousto-optic programmable dispersive filter (AOPDF) is presented. Phase and amplitude measurements of the AOPDF transfer function are performed using spatially and spectrally resolved interferometry. Spatiotemporal and spatio-spectral coupling effects are presented for a range of shaped pulses that are commonly used in quantum control experiments. These effects are shown to be attributable to a single mechanism: a group-delay-dependent displacement of the shaped pulse. The physical mechanism is explained, and excellent quantitative agreement between the measured and calculated coupling speed is obtained. The implications for quantum control experiments are discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
    [CrossRef]
  2. K. Ohmori, “Wave-packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60, 487–511 (2009).
    [CrossRef] [PubMed]
  3. M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104, 1813–1860 (2004).
    [CrossRef] [PubMed]
  4. V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
    [CrossRef] [PubMed]
  5. R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709–713 (2001).
    [CrossRef] [PubMed]
  6. T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
    [CrossRef]
  7. A. Monmayrant, B. Chatel, and B. Girard, “Quantum state measurement using coherent transients,” Phys. Rev. Lett. 96, 103002 (2006).
    [CrossRef] [PubMed]
  8. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
    [CrossRef]
  9. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  10. A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671(2004).
    [CrossRef]
  11. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
    [CrossRef]
  12. M. B. Danailov and I. P. Christov, “Time-space shaping of light pulses by fourier optical processing,” J. Mod. Opt. 36, 725–731(1989).
    [CrossRef]
  13. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12, 1343–1362 (1995).
    [CrossRef]
  14. M. Wefers and K. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
    [CrossRef]
  15. C. Dorrer and F. Salin, “Phase amplitude coupling in spectral phase modulation,” IEEE J. Sel. Top. Quantum Electron. 4, 342–345 (1998).
    [CrossRef]
  16. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19, 2795–2802 (2002).
    [CrossRef]
  17. B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
    [CrossRef]
  18. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
    [CrossRef] [PubMed]
  19. J. Seres, A. Müller, E. Seres, K. O’Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, “Sub-10 fs, terawatt-scale ti:sapphire laser system,” Opt. Lett. 28, 1832–1834(2003).
    [CrossRef] [PubMed]
  20. A. Börzsönyi, M. Mero, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of the spectral phase shift and the residual angular dispersion of an AOPDF,” in American Institute of Physics Conference, Light at Extreme Intensities—Opportunities and Technological Issues of the Extreme Light Infrastructure: LEI 2009, D.Dumitras, ed. (Brasov, 2010), Vol. 1228, pp. 138–143.
  21. S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31, 1899–1901 (2006).
    [CrossRef] [PubMed]
  22. A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
    [CrossRef]
  23. M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
    [CrossRef]
  24. N. T. Form, R. Burbidge, J. Ramon, and B. J. Whitaker, “Parameterization of an acousto-optic programmable dispersive filter for closed-loop learning experiments,” J. Mod. Opt. 55, 197–209(2008).
    [CrossRef]
  25. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009).
    [CrossRef]
  26. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
    [CrossRef] [PubMed]
  27. M. Greenfield, S. D. McGrane, and D. S. Moore, “Control of cis-stilbene photochemistry using shaped ultraviolet pulses,” J. Phys. Chem. A 113, 2333–2339 (2009).
    [CrossRef] [PubMed]
  28. S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98, 323–326(2009).
    [CrossRef]
  29. S. Lee, J. Lim, and J. Ahn, “Strong-field two-photon absorption in atomic cesium: an analytical control approach,” Opt. Express 17, 7648–7657 (2009).
    [CrossRef] [PubMed]
  30. N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express 18, 6164–6171 (2010).
    [CrossRef] [PubMed]
  31. P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20 fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).
    [CrossRef] [PubMed]
  32. D. J. Kane, A. J. Taylor, R. Trebino, and K. W. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19, 1061–1063 (1994).
    [CrossRef] [PubMed]
  33. S. Backus, C. G. DurfeeIII, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223(1998).
    [CrossRef]
  34. D. Kaplan and P. Tournois, “Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping,” J. Phys. IV 12, 69–75 (2002).
    [CrossRef]
  35. D. R. Austin, T. Witting, and I. A. Walmsley, “Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48, 3846–3853 (2009).
    [CrossRef] [PubMed]
  36. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  37. W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
    [CrossRef]
  38. A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B 15, 122–141 (1998).
    [CrossRef]

2010 (2)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express 18, 6164–6171 (2010).
[CrossRef] [PubMed]

2009 (8)

D. R. Austin, T. Witting, and I. A. Walmsley, “Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48, 3846–3853 (2009).
[CrossRef] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009).
[CrossRef]

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

M. Greenfield, S. D. McGrane, and D. S. Moore, “Control of cis-stilbene photochemistry using shaped ultraviolet pulses,” J. Phys. Chem. A 113, 2333–2339 (2009).
[CrossRef] [PubMed]

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98, 323–326(2009).
[CrossRef]

S. Lee, J. Lim, and J. Ahn, “Strong-field two-photon absorption in atomic cesium: an analytical control approach,” Opt. Express 17, 7648–7657 (2009).
[CrossRef] [PubMed]

K. Ohmori, “Wave-packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60, 487–511 (2009).
[CrossRef] [PubMed]

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

2008 (2)

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

N. T. Form, R. Burbidge, J. Ramon, and B. J. Whitaker, “Parameterization of an acousto-optic programmable dispersive filter for closed-loop learning experiments,” J. Mod. Opt. 55, 197–209(2008).
[CrossRef]

2006 (3)

S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31, 1899–1901 (2006).
[CrossRef] [PubMed]

V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
[CrossRef] [PubMed]

A. Monmayrant, B. Chatel, and B. Girard, “Quantum state measurement using coherent transients,” Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

2004 (4)

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20 fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).
[CrossRef] [PubMed]

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104, 1813–1860 (2004).
[CrossRef] [PubMed]

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671(2004).
[CrossRef]

2003 (2)

2002 (3)

T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19, 2795–2802 (2002).
[CrossRef]

D. Kaplan and P. Tournois, “Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping,” J. Phys. IV 12, 69–75 (2002).
[CrossRef]

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

2001 (1)

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709–713 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (1)

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

1998 (3)

C. Dorrer and F. Salin, “Phase amplitude coupling in spectral phase modulation,” IEEE J. Sel. Top. Quantum Electron. 4, 342–345 (1998).
[CrossRef]

S. Backus, C. G. DurfeeIII, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223(1998).
[CrossRef]

A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B 15, 122–141 (1998).
[CrossRef]

1996 (1)

M. Wefers and K. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
[CrossRef]

1995 (1)

1994 (1)

1989 (1)

M. B. Danailov and I. P. Christov, “Time-space shaping of light pulses by fourier optical processing,” J. Mod. Opt. 36, 725–731(1989).
[CrossRef]

1982 (1)

Ahn, J.

S. Lee, J. Lim, and J. Ahn, “Strong-field two-photon absorption in atomic cesium: an analytical control approach,” Opt. Express 17, 7648–7657 (2009).
[CrossRef] [PubMed]

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Alford, W. J.

Arbouet, A.

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

Armstrong, D. J.

Austin, D. R.

Backus, S.

S. Backus, C. G. DurfeeIII, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223(1998).
[CrossRef]

Barman, B.

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

Barthélemy, M.

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98, 323–326(2009).
[CrossRef]

Baum, P.

Berry, R. S.

V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
[CrossRef] [PubMed]

Bonacic-Koutecky, V.

V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
[CrossRef] [PubMed]

Börzsönyi, A.

A. Börzsönyi, M. Mero, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of the spectral phase shift and the residual angular dispersion of an AOPDF,” in American Institute of Physics Conference, Light at Extreme Intensities—Opportunities and Technological Issues of the Extreme Light Infrastructure: LEI 2009, D.Dumitras, ed. (Brasov, 2010), Vol. 1228, pp. 138–143.

Boutou, V.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

Bucksbaum, P. H.

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Burbidge, R.

N. T. Form, R. Burbidge, J. Ramon, and B. J. Whitaker, “Parameterization of an acousto-optic programmable dispersive filter for closed-loop learning experiments,” J. Mod. Opt. 55, 197–209(2008).
[CrossRef]

Chambaret, J. P.

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Chatel, A.

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98, 323–326(2009).
[CrossRef]

A. Monmayrant, B. Chatel, and B. Girard, “Quantum state measurement using coherent transients,” Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef] [PubMed]

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671(2004).
[CrossRef]

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

Cheng, Z.

Chériaux, G.

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Christov, I. P.

M. B. Danailov and I. P. Christov, “Time-space shaping of light pulses by fourier optical processing,” J. Mod. Opt. 36, 725–731(1989).
[CrossRef]

Coudreau, S.

Courvoisier, F.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

Danailov, M. B.

M. B. Danailov and I. P. Christov, “Time-space shaping of light pulses by fourier optical processing,” J. Mod. Opt. 36, 725–731(1989).
[CrossRef]

Dantus, M.

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104, 1813–1860 (2004).
[CrossRef] [PubMed]

Degert, J.

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

DeLong, K. W.

Dorrer, C.

C. Dorrer and F. Salin, “Phase amplitude coupling in spectral phase modulation,” IEEE J. Sel. Top. Quantum Electron. 4, 342–345 (1998).
[CrossRef]

Durfee, C. G.

S. Backus, C. G. DurfeeIII, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223(1998).
[CrossRef]

Ferré, S.

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

Form, N. T.

N. T. Form, R. Burbidge, J. Ramon, and B. J. Whitaker, “Parameterization of an acousto-optic programmable dispersive filter for closed-loop learning experiments,” J. Mod. Opt. 55, 197–209(2008).
[CrossRef]

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

Girard, B.

A. Monmayrant, B. Chatel, and B. Girard, “Quantum state measurement using coherent transients,” Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef] [PubMed]

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

Goswami, D.

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[CrossRef]

Greenfield, M.

M. Greenfield, S. D. McGrane, and D. S. Moore, “Control of cis-stilbene photochemistry using shaped ultraviolet pulses,” J. Phys. Chem. A 113, 2333–2339 (2009).
[CrossRef] [PubMed]

Guyon, L.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

Herzog, R. F.

Ina, H.

Kalashnikov, M. P.

A. Börzsönyi, M. Mero, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of the spectral phase shift and the residual angular dispersion of an AOPDF,” in American Institute of Physics Conference, Light at Extreme Intensities—Opportunities and Technological Issues of the Extreme Light Infrastructure: LEI 2009, D.Dumitras, ed. (Brasov, 2010), Vol. 1228, pp. 138–143.

Kane, D. J.

Kannari, F.

Kaplan, D.

S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31, 1899–1901 (2006).
[CrossRef] [PubMed]

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

J. Seres, A. Müller, E. Seres, K. O’Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, “Sub-10 fs, terawatt-scale ti:sapphire laser system,” Opt. Lett. 28, 1832–1834(2003).
[CrossRef] [PubMed]

D. Kaplan and P. Tournois, “Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping,” J. Phys. IV 12, 69–75 (2002).
[CrossRef]

Kapteyn, H. C.

S. Backus, C. G. DurfeeIII, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223(1998).
[CrossRef]

Kobayashi, S.

Kovács, A. P.

A. Börzsönyi, M. Mero, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of the spectral phase shift and the residual angular dispersion of an AOPDF,” in American Institute of Physics Conference, Light at Extreme Intensities—Opportunities and Technological Issues of the Extreme Light Infrastructure: LEI 2009, D.Dumitras, ed. (Brasov, 2010), Vol. 1228, pp. 138–143.

Krausz, F.

Krebs, N.

Laude, V.

Lausten, R.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Lee, S.

Lenner, M.

Levis, R. J.

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709–713 (2001).
[CrossRef] [PubMed]

Lim, J.

Lochbrunner, S.

Lozovoy, V. V.

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104, 1813–1860 (2004).
[CrossRef] [PubMed]

Matsika, S.

McGrane, S. D.

M. Greenfield, S. D. McGrane, and D. S. Moore, “Control of cis-stilbene photochemistry using shaped ultraviolet pulses,” J. Phys. Chem. A 113, 2333–2339 (2009).
[CrossRef] [PubMed]

Menkir, G. M.

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709–713 (2001).
[CrossRef] [PubMed]

Mero, M.

A. Börzsönyi, M. Mero, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of the spectral phase shift and the residual angular dispersion of an AOPDF,” in American Institute of Physics Conference, Light at Extreme Intensities—Opportunities and Technological Issues of the Extreme Light Infrastructure: LEI 2009, D.Dumitras, ed. (Brasov, 2010), Vol. 1228, pp. 138–143.

Mitric, R.

V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
[CrossRef] [PubMed]

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

A. Monmayrant, B. Chatel, and B. Girard, “Quantum state measurement using coherent transients,” Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef] [PubMed]

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671(2004).
[CrossRef]

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

Moore, D. S.

M. Greenfield, S. D. McGrane, and D. S. Moore, “Control of cis-stilbene photochemistry using shaped ultraviolet pulses,” J. Phys. Chem. A 113, 2333–2339 (2009).
[CrossRef] [PubMed]

Motzkus, M.

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

Müller, A.

Murnane, M. M.

S. Backus, C. G. DurfeeIII, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223(1998).
[CrossRef]

Nelson, K.

M. Wefers and K. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
[CrossRef]

Nelson, K. A.

Notebaert, L.

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

O’Keeffe, K.

Ohmori, K.

K. Ohmori, “Wave-packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60, 487–511 (2009).
[CrossRef] [PubMed]

Osvay, K.

A. Börzsönyi, M. Mero, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of the spectral phase shift and the residual angular dispersion of an AOPDF,” in American Institute of Physics Conference, Light at Extreme Intensities—Opportunities and Technological Issues of the Extreme Light Infrastructure: LEI 2009, D.Dumitras, ed. (Brasov, 2010), Vol. 1228, pp. 138–143.

Pittman, M.

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Probst, R. A.

Rabitz, H.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709–713 (2001).
[CrossRef] [PubMed]

Ramon, J.

N. T. Form, R. Burbidge, J. Ramon, and B. J. Whitaker, “Parameterization of an acousto-optic programmable dispersive filter for closed-loop learning experiments,” J. Mod. Opt. 55, 197–209(2008).
[CrossRef]

Riedle, E.

Roslund, J.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

Roth, M.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

Rousseau, J. P.

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Salin, F.

C. Dorrer and F. Salin, “Phase amplitude coupling in spectral phase modulation,” IEEE J. Sel. Top. Quantum Electron. 4, 342–345 (1998).
[CrossRef]

Seres, E.

Seres, J.

Smith, A. V.

Spielmann, C.

Stolow, A.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Sussman, B. J.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Takeda, M.

Tanabe, H.

Tanabe, T.

Taylor, A. J.

Teramura, Y.

Tournois, P.

Trebino, R.

Tseng, C. H.

Verluise, F.

Walmsley, I. A.

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98, 323–326(2009).
[CrossRef]

Wefers, M.

M. Wefers and K. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
[CrossRef]

Wefers, M. M.

Weinacht, T. C.

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009).
[CrossRef]

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Werner, U.

V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
[CrossRef] [PubMed]

Whitaker, B. J.

N. T. Form, R. Burbidge, J. Ramon, and B. J. Whitaker, “Parameterization of an acousto-optic programmable dispersive filter for closed-loop learning experiments,” J. Mod. Opt. 55, 197–209(2008).
[CrossRef]

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

Witting, T.

Woeste, L.

V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
[CrossRef] [PubMed]

Wohlleben, W.

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

Wolf, J.-P.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. Ohmori, “Wave-packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60, 487–511 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (4)

W. Wohlleben, J. Degert, A. Monmayrant, B. Chatel, M. Motzkus, and B. Girard, “Coherent transients as a highly sensitive probe for femtosecond pulse shapers,” Appl. Phys. B 79, doi:10.1007/s00340-004-1555-x 435–439 (2004).
[CrossRef]

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98, 323–326(2009).
[CrossRef]

A. Monmayrant, A. Arbouet, B. Girard, A. Chatel, B. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81, 177–180(2005).
[CrossRef]

M. Pittman, S. Ferré, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100 tw100 hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Chem. Rev. (1)

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104, 1813–1860 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. Wefers and K. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Dorrer and F. Salin, “Phase amplitude coupling in spectral phase modulation,” IEEE J. Sel. Top. Quantum Electron. 4, 342–345 (1998).
[CrossRef]

J. Chem. Phys. (1)

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

J. Mod. Opt. (2)

N. T. Form, R. Burbidge, J. Ramon, and B. J. Whitaker, “Parameterization of an acousto-optic programmable dispersive filter for closed-loop learning experiments,” J. Mod. Opt. 55, 197–209(2008).
[CrossRef]

M. B. Danailov and I. P. Christov, “Time-space shaping of light pulses by fourier optical processing,” J. Mod. Opt. 36, 725–731(1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

J. Phys. Chem. A (1)

M. Greenfield, S. D. McGrane, and D. S. Moore, “Control of cis-stilbene photochemistry using shaped ultraviolet pulses,” J. Phys. Chem. A 113, 2333–2339 (2009).
[CrossRef] [PubMed]

J. Phys. IV (1)

D. Kaplan and P. Tournois, “Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping,” J. Phys. IV 12, 69–75 (2002).
[CrossRef]

Nature (1)

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rep. (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[CrossRef]

Phys. Rev. A (1)

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

A. Monmayrant, B. Chatel, and B. Girard, “Quantum state measurement using coherent transients,” Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef] [PubMed]

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001(2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Bonacic-Koutecky, R. Mitric, U. Werner, L. Woeste, and R. S. Berry, “Ultrafast dynamics in atomic clusters: analysis and control,” Proc. Natl. Acad. Sci. U.S.A. 103, 10594–10599 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671(2004).
[CrossRef]

S. Backus, C. G. DurfeeIII, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223(1998).
[CrossRef]

Science (1)

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709–713 (2001).
[CrossRef] [PubMed]

Other (1)

A. Börzsönyi, M. Mero, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of the spectral phase shift and the residual angular dispersion of an AOPDF,” in American Institute of Physics Conference, Light at Extreme Intensities—Opportunities and Technological Issues of the Extreme Light Infrastructure: LEI 2009, D.Dumitras, ed. (Brasov, 2010), Vol. 1228, pp. 138–143.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

AOPDF (Fastlite Dazzler) SSI characterization setup. The pulse shaper is placed in one arm of an interferometer. The unknown and reference arms are recombined at the entrance slit to a two-dimensional spectrometer with a slight angle and variable delay. The imaging spectrometer measures the resultant interference fringes, from which the relative spectral phase may be extracted. The spectrometer measures a spatially resolved spectrum along the slit axis x. A cylindrical lens focuses the beams onto the entrance slit of the spectrometer along the nonimaged spatial axis. A half wave plate rotates the polarization in the reference beam arm.

Fig. 2
Fig. 2

Fourier filtering process. (a) Raw interferogram measured by the spectrometer camera. (b) A two-dimensional Fourier transform is performed. An ac term is filtered out within the Fourier domain. (c) An inverse two-dimensional Fourier transform of this term isolates the final term of Eq. (1). The mapping onto calibrated frequency and position axes is calculated. (d) Extracted phase difference ϕ s ( x , ω ) ϕ r ( x , ω ) , modulo 2 π .

Fig. 3
Fig. 3

Spatiotemporal coupling for a single optical pulse as the diffraction position within the AOPDF crystal is varied. The central beam position along the spatial axis of the spectrometer is plotted as a function of delay τ. A linear dependence is observed with a best-fit gradient of 0.249 ± 0.012 mm / ps .

Fig. 4
Fig. 4

Reconstructed spatiotemporal amplitude distribution of a train of three pulses each separated by 1.5 ps . The reconstructed pulse train exhibits a linear spatiotemporal coupling effect that is consistent with the 0.25 mm / ps best-fit gradient observed for the pulse delay experiments (superimposed dotted line).

Fig. 5
Fig. 5

Spatio-spectral coupling effects for a series of chirped pulses [ ϕ ( 2 ) parameters as shown]. (a) Reconstructed spatio-spectral intensities of pulses of different chirps. A spatio-spectral tilt is observed that is more significant for the more strongly chirped pulses and that changes sign with the sign of the chirp. (b) Extracted spatio-spectral coupling as a function of chirp (data points) together with a calculated best-fit coupling speed of 0.252 ± 0.004 mm / ps (solid line). This value is in close agreement with the measurement of Subsection 3A; the reconstructed pulse was otherwise found to be free of further spatiotemporal coupling effects. The vertical axis shows the change in central position of the beam across the spectral bandwidth of the pulse.

Fig. 6
Fig. 6

Spatio-spectral coupling effects for π phase steps of varying sharpnesses. (a) Reconstructed spatio-spectral intensities of a series of π phase steps with sharpnesses as indicated. A spatial shift is observed at the step frequency that is more pronounced for sharper steps. (b) Observed lateral displacement of the notch (data points) together with a calculation derived from the measured group delay at the phase step and a 0.25 mm / ps spatiotemporal coupling speed (solid line). An example spectral phase across a slice through the middle of the pulse is shown inset (crosses) together with a fit of the function in Table 1 (solid line).

Tables (1)

Tables Icon

Table 1 Transfer Function, H ( ω ) , for the Pulse Shapes Presented in Section 3 a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( x , ω ) = | A s ( x , ω ) e i ϕ s ( x , ω ) + A r ( x , ω ) e i [ ϕ r ( x , ω ) + ω τ + k x x ] | 2 = | A s ( x , ω ) | 2 + | A r ( x , ω ) | 2 + | A s ( x , ω ) | | A r ( x , ω ) | × cos [ ϕ s ( x , ω ) ϕ r ( x , ω ) ω τ k x x ] .

Metrics