Abstract

A comparative study between 808 and 914nm pumping of Nd:YVO4 crystals for laser operation at 1064nm has been carried out. Using similar setups, performances of both configurations were first studied in the continuous wave, small-signal gain, and Q-switched regimes. Thanks to a numerical model, it is shown that fluorescence quenching and upconversion processes limit the possible uses for the 914nm pumping scheme to regimes with low population inversions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
    [CrossRef]
  2. P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
    [CrossRef]
  3. V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, “Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator,” Opt. Lett. 28, 1275–1277 (2003).
    [CrossRef] [PubMed]
  4. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 WTEM00Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006).
    [CrossRef] [PubMed]
  5. Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82, 844–846(2003).
    [CrossRef]
  6. D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct inband diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009).
    [CrossRef] [PubMed]
  7. A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317 (2000).
    [CrossRef]
  8. Y. F. Chen, Y. P. Lan, and S. C. Wang, “Modeling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion,” J. Opt. Soc. Am. B 19, 1558–1563(2002).
    [CrossRef]
  9. V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
    [CrossRef]
  10. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
    [CrossRef]
  11. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
    [CrossRef]
  12. Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to sigh powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239(1999).
    [CrossRef]
  13. Z. Huang, Y. Huang, Y. Chen, and Z. Luo, “Theoretical study on the laser performances of Nd3+:YAG and Nd3+:YVO4 under indirect and direct pumping,” J. Opt. Soc. Am. B 22, 2564–2569(2005).
    [CrossRef]
  14. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  15. A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
    [CrossRef]
  16. R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds., Trends in Optics and Photonics Series (Optical Society of America, 2002), Vol. 68, paper TuB17.
  17. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
    [CrossRef]
  18. L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the Auger upconversion constants in a Nd:YVO4 standing wave laser,” Opt. Commun. 203, 341–347(2002).
    [CrossRef]
  19. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
    [CrossRef]
  20. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
    [CrossRef]
  21. D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
    [CrossRef]
  22. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
    [CrossRef]
  23. L. McDonagh and R. Wallenstein, “Low-noise 62 W CW intracavity-doubled TEM00Nd:YVO4 green laser pumped at 888 nm,” Opt. Lett. 32, 802–804 (2007).
    [CrossRef] [PubMed]
  24. L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHzrepetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32, 1259–1261 (2007).
    [CrossRef] [PubMed]
  25. M. C. Nadeau, S. Petit, P. Balcou, R. Czarny, S. Montant, and C. Simon-Boisson, “Picosecond pulses of variable duration from a high-power passively mode-locked Nd:YVO4 laser free of spatial hole burning,” Opt. Lett. 35, 1644–1646 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
[CrossRef]

D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct inband diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
[CrossRef]

L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 WTEM00Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (2)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82, 844–846(2003).
[CrossRef]

V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, “Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator,” Opt. Lett. 28, 1275–1277 (2003).
[CrossRef] [PubMed]

2002 (3)

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Modeling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion,” J. Opt. Soc. Am. B 19, 1558–1563(2002).
[CrossRef]

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the Auger upconversion constants in a Nd:YVO4 standing wave laser,” Opt. Commun. 203, 341–347(2002).
[CrossRef]

2000 (2)

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317 (2000).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

1999 (1)

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to sigh powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239(1999).
[CrossRef]

1998 (3)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
[CrossRef]

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
[CrossRef]

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

1997 (2)

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

1987 (1)

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

1977 (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

Balcou, P.

Balembois, F.

D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct inband diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009).
[CrossRef] [PubMed]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Birnbaum, M.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
[CrossRef]

Brown, D. C.

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

Brun, A.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Cassanho, A.

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds., Trends in Optics and Photonics Series (Optical Society of America, 2002), Vol. 68, paper TuB17.

Castaing, M.

Chen, Y.

Chen, Y. F.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Modeling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion,” J. Opt. Soc. Am. B 19, 1558–1563(2002).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to sigh powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239(1999).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Czarny, R.

Czeranowsky, C.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

Damzen, M. J.

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
[CrossRef]

Druon, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Erler, J. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

Falcoz, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Fields, R. A.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Fincher, C. L.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

Georges, P.

D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct inband diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009).
[CrossRef] [PubMed]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Guy, S.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
[CrossRef]

Hanna, D. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
[CrossRef]

Heumann, E.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Huang, Y.

Huang, Z.

Huber, G.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
[CrossRef]

Jensen, T.

Jenssen, H. P.

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds., Trends in Optics and Photonics Series (Optical Society of America, 2002), Vol. 68, paper TuB17.

Kan, H.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
[CrossRef]

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Kerboull, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Knappe, R.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Kolev, V. Z.

Kutovoi, S.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

Lan, Y. P.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Modeling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion,” J. Opt. Soc. Am. B 19, 1558–1563(2002).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Lederer, M. J.

Liao, C. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Luo, Z.

Lupei, V.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82, 844–846(2003).
[CrossRef]

Luther-Davies, B.

McDonagh, L.

Meilhac, L.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the Auger upconversion constants in a Nd:YVO4 standing wave laser,” Opt. Commun. 203, 341–347(2002).
[CrossRef]

Meyn, J. P.

Montant, S.

Nadeau, M. C.

Nebel, A.

Noginov, M. A.

Ostroumov, V.

Pauliat, G.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the Auger upconversion constants in a Nd:YVO4 standing wave laser,” Opt. Commun. 203, 341–347(2002).
[CrossRef]

Pavel, N.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82, 844–846(2003).
[CrossRef]

Peterson, R. D.

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds., Trends in Optics and Photonics Series (Optical Society of America, 2002), Vol. 68, paper TuB17.

Petit, S.

Rode, A. V.

Roosen, G.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the Auger upconversion constants in a Nd:YVO4 standing wave laser,” Opt. Commun. 203, 341–347(2002).
[CrossRef]

Saikawa, J.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
[CrossRef]

Sangla, D.

Sato, Y.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82, 844–846(2003).
[CrossRef]

Schmidt, M.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

Sennaroglu, A.

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317 (2000).
[CrossRef]

Shardlow, P. C.

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
[CrossRef]

Shepherd, D. P.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
[CrossRef]

Simon-Boisson, C.

Taira, T.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82, 844–846(2003).
[CrossRef]

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
[CrossRef]

Tucker, A. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

Wallenstein, R.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Wang, S. C.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Modeling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion,” J. Opt. Soc. Am. B 19, 1558–1563(2002).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Zavartsev, Y.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

Appl. Phys. B (3)

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
[CrossRef]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34 μm laser emission and of heating effects under 809- and 885 nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605(2006).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82, 844–846(2003).
[CrossRef]

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

IEEE J. Quantum Electron. (5)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, and A. C. Tropper, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909(1998).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to sigh powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239(1999).
[CrossRef]

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

J. Appl. Phys. (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mw output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).
[CrossRef]

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the Auger upconversion constants in a Nd:YVO4 standing wave laser,” Opt. Commun. 203, 341–347(2002).
[CrossRef]

Opt. Lett. (6)

Opt. Quantum Electron. (1)

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317 (2000).
[CrossRef]

Other (2)

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds., Trends in Optics and Photonics Series (Optical Society of America, 2002), Vol. 68, paper TuB17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup used for CW experiments. M 1 is coated on the crystal (HT808/HT914/HR1064). M 2 is a R = 100 mm concave mirror and M 3 is the plane output coupler ( T = 15 % ). The insert contains elements used for gain measurement: P stands for polarizer and λ / 4 stands for quarter wave plate.

Fig. 2
Fig. 2

Efficiency curves for 914 nm pumping (circles) and 808 nm pumping (squares). Linear fitting (solid curves) gives 81% slope efficiency for 914 nm and 58% slope efficiency for 808 nm pumping.

Fig. 3
Fig. 3

Experimental double pass small-signal gain at 1064 nm versus absorbed pump power for 914 nm pumping (circles) and 808 nm pumping (squares).

Fig. 4
Fig. 4

Theoretical (solid curve) and experimental (squares) double pass small-signal gain at 1064 nm versus absorbed pump power.

Fig. 5
Fig. 5

Theoretical double pass small-signal gain at 1064 nm versus absorbed pump power at 914 nm (solid curves) and experimental double pass small-signal gain (circles) under different hypotheses. Pump waist radius: w p = 287 μm .

Fig. 6
Fig. 6

Experimental setup used for Q-switched regime.

Fig. 7
Fig. 7

Fractional thermal loading versus inver sion of population density for a fixed pumping rate ( R = 1.7 × 10 29 ph . m 3 . s 1 ) and three pumping wavelengths and doping concentrations ( 808 nm / 0.1 % , 888 nm / 0.5 % , and 914 nm / 1.5 % ).

Tables (1)

Tables Icon

Table 1 Experimental Results in Q-Switched Regime for Optimal Coupling Value T = 20% and Absorbed Pump Power of 13.5 W for 914 nm Pumping and 11.4 W for 808 nm Pumping a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

G 0 2 R = 1.
d Δ n d t = ( σ a p c I p c + σ a p a I p a ) ( n t Δ n ) Δ n τ ,
Δ n ( z ) = n t τ σ a p c I p c ( z ) + σ a p a I p a ( z ) 1 + I p c ( z ) I p sat c + I p a ( z ) I p sat a ,
α p ( z ) = σ a p n t σ a p Δ n ( z ) .
I p ( z + d z ) = I p ( z ) exp ( α ( z ) d z ) .
G 0 2 = exp ( 2 0 L σ e l Δ n ( z ) d z ) ,
d Δ n d t = σ a p I p n t ( σ a p + σ e p ) I p Δ n Δ n τ ,
Δ n ( z ) = n t τ σ a p I p ( z ) 1 + I p ( z ) I p sat ,
1 τ = 1 τ s p + 1 τ n r .
d Δ n d t = σ a p I p n t ( σ a p + σ e p ) I p Δ n Δ n τ n r Δ n τ s p γ Δ n 2 .
Δ n ( z ) = 1 2 γ ( ( ( σ a p + σ e p ) I p ( z ) + 1 τ ) + { [ ( σ a p + σ e p ) I p ( z ) + 1 τ ] 2 + 4 γ σ a p I p ( z ) n t } 1 / 2 ) .
η H = η Q + ν l R ν p ( Δ n τ n r + γ Δ n 2 ) .
Δ n 0 = 1 τ + ( 1 τ 2 + 4 γ R ) 1 / 2 2 γ .

Metrics