Abstract

Guided-wave parametric downconversion with a transverse pump is a versatile means to generate a wide range of two-photon states. We propose and compare some microcavity-based schemes for the generation of counterpropagating photon pairs, and we experimentally demonstrate a bright source emitting 1.2×1011  pairs/pump photon for a 1.8mm long waveguide. These results are promising for integrated quantum information technology.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Transversely pumped counterpropagating optical parametric oscillation and amplification,” Phys. Rev. Lett. 75, 429–432 (1995).
    [CrossRef] [PubMed]
  2. Y. J. Ding, J. B. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
    [CrossRef]
  3. G. Beadie, W. S. Rabinovich, and Y. J. Ding, “Transversely pumped nonlinear conversion structure which generates counterpropagating guided waves: theory and numerical modeling,” IEEE J. Quantum Electron. 37, 863–872 (2001).
    [CrossRef]
  4. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
    [CrossRef]
  5. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon. 1, 459–462 (2007).
    [CrossRef]
  6. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
    [CrossRef] [PubMed]
  7. Y.-S. Zhang, C.-F. Li, Y.-F. Huang, and G.-C. Guo, “Limitations of practical multiphoton decoherence-free states,” Phys. Rev. A 72, 012308 (2005).
    [CrossRef]
  8. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
    [CrossRef] [PubMed]
  9. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
    [CrossRef]
  10. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [CrossRef]
  11. A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).
  12. J. P. Torres, F. Macià, S. Carrasco, and L. Torner, “Engineering the frequency correlations of entangled two-photon states by achromatic phase matching,” Opt. Lett. 30, 314–316(2005).
    [CrossRef] [PubMed]
  13. A. B. U’ren, R. Erdmann, and I. A. Walmsley, “Synthesis of time-bin entangled states via tailored group velocity matching,” J. Mod. Opt. 52, 2197–2205 (2005).
    [CrossRef]
  14. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
    [CrossRef]
  15. Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
    [CrossRef]
  16. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
    [CrossRef] [PubMed]
  17. L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
    [CrossRef]
  18. X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
    [CrossRef] [PubMed]
  19. A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
    [CrossRef] [PubMed]
  20. M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
    [CrossRef]
  21. A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
    [CrossRef]
  22. L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
    [CrossRef]
  23. M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
    [CrossRef]
  24. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
    [CrossRef]
  25. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

2008 (1)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

2007 (2)

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon. 1, 459–462 (2007).
[CrossRef]

2006 (3)

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
[CrossRef]

2005 (3)

J. P. Torres, F. Macià, S. Carrasco, and L. Torner, “Engineering the frequency correlations of entangled two-photon states by achromatic phase matching,” Opt. Lett. 30, 314–316(2005).
[CrossRef] [PubMed]

A. B. U’ren, R. Erdmann, and I. A. Walmsley, “Synthesis of time-bin entangled states via tailored group velocity matching,” J. Mod. Opt. 52, 2197–2205 (2005).
[CrossRef]

Y.-S. Zhang, C.-F. Li, Y.-F. Huang, and G.-C. Guo, “Limitations of practical multiphoton decoherence-free states,” Phys. Rev. A 72, 012308 (2005).
[CrossRef]

2004 (1)

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

2003 (2)

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

2002 (3)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[CrossRef]

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

2001 (4)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

G. Beadie, W. S. Rabinovich, and Y. J. Ding, “Transversely pumped nonlinear conversion structure which generates counterpropagating guided waves: theory and numerical modeling,” IEEE J. Quantum Electron. 37, 863–872 (2001).
[CrossRef]

1995 (2)

Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Transversely pumped counterpropagating optical parametric oscillation and amplification,” Phys. Rev. Lett. 75, 429–432 (1995).
[CrossRef] [PubMed]

Y. J. Ding, J. B. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

1966 (1)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
[CrossRef]

Andronico, A.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

Atatüre, M.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Banaszek, K.

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

Beadie, G.

G. Beadie, W. S. Rabinovich, and Y. J. Ding, “Transversely pumped nonlinear conversion structure which generates counterpropagating guided waves: theory and numerical modeling,” IEEE J. Quantum Electron. 37, 863–872 (2001).
[CrossRef]

Berger, V.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

Bertolotti, M.

L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
[CrossRef]

Booth, M. C.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Caillet, X.

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef] [PubMed]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

Canalias, C.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon. 1, 459–462 (2007).
[CrossRef]

Carrasco, S.

Centini, M.

L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
[CrossRef]

De Rossi, A.

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

Di Giuseppe, G.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Ding, Y. J.

G. Beadie, W. S. Rabinovich, and Y. J. Ding, “Transversely pumped nonlinear conversion structure which generates counterpropagating guided waves: theory and numerical modeling,” IEEE J. Quantum Electron. 37, 863–872 (2001).
[CrossRef]

Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Transversely pumped counterpropagating optical parametric oscillation and amplification,” Phys. Rev. Lett. 75, 429–432 (1995).
[CrossRef] [PubMed]

Y. J. Ding, J. B. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

Ducci, S.

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

Erdmann, R.

A. B. U’ren, R. Erdmann, and I. A. Walmsley, “Synthesis of time-bin entangled states via tailored group velocity matching,” J. Mod. Opt. 52, 2197–2205 (2005).
[CrossRef]

Favero, I.

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

Filloux, P.

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

Ghiglieno, F.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Giovannetti, V.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Guillotel, E.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Guo, G.-C.

Y.-S. Zhang, C.-F. Li, Y.-F. Huang, and G.-C. Guo, “Limitations of practical multiphoton decoherence-free states,” Phys. Rev. A 72, 012308 (2005).
[CrossRef]

Harris, S. E.

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
[CrossRef]

Huang, Y.-F.

Y.-S. Zhang, C.-F. Li, Y.-F. Huang, and G.-C. Guo, “Limitations of practical multiphoton decoherence-free states,” Phys. Rev. A 72, 012308 (2005).
[CrossRef]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
[CrossRef] [PubMed]

Khurgin, J. B.

Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Transversely pumped counterpropagating optical parametric oscillation and amplification,” Phys. Rev. Lett. 75, 429–432 (1995).
[CrossRef] [PubMed]

Y. J. Ding, J. B. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
[CrossRef] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

Lanco, L.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

Langlois, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Le Dû, M.

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

Lee, S. J.

Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Transversely pumped counterpropagating optical parametric oscillation and amplification,” Phys. Rev. Lett. 75, 429–432 (1995).
[CrossRef] [PubMed]

Lee, S.-J.

Y. J. Ding, J. B. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

Lemaître, A.

Leo, G.

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

Li, C.-F.

Y.-S. Zhang, C.-F. Li, Y.-F. Huang, and G.-C. Guo, “Limitations of practical multiphoton decoherence-free states,” Phys. Rev. A 72, 012308 (2005).
[CrossRef]

Likforman, J.-P.

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

Lloyd, S.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

Maccone, L.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

Macià, F.

Marcadet, X.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

Milburn, G.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
[CrossRef] [PubMed]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
[CrossRef] [PubMed]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
[CrossRef] [PubMed]

Orieux, A.

Pasiskevicius, V.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon. 1, 459–462 (2007).
[CrossRef]

Rabinovich, W. S.

G. Beadie, W. S. Rabinovich, and Y. J. Ding, “Transversely pumped nonlinear conversion structure which generates counterpropagating guided waves: theory and numerical modeling,” IEEE J. Quantum Electron. 37, 863–872 (2001).
[CrossRef]

Ravaro, M.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

Ricolleau, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Saleh, B. E. A.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Scalora, M.

L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
[CrossRef]

Sciscione, L.

L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
[CrossRef]

Sergienko, A. V.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Shapiro, J. H.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[CrossRef]

Sibilia, C.

L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
[CrossRef]

Teich, M. C.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Torner, L.

Torres, J. P.

U’ren, A. B.

A. B. U’ren, R. Erdmann, and I. A. Walmsley, “Synthesis of time-bin entangled states via tailored group velocity matching,” J. Mod. Opt. 52, 2197–2205 (2005).
[CrossRef]

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

van Houwelingen, J. A. W.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Walmsley, I. A.

A. B. U’ren, R. Erdmann, and I. A. Walmsley, “Synthesis of time-bin entangled states via tailored group velocity matching,” J. Mod. Opt. 52, 2197–2205 (2005).
[CrossRef]

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Walton, Z. D.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

Wong, F. N. C.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

Zbinden, H.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Zhang, Y.-S.

Y.-S. Zhang, C.-F. Li, Y.-F. Huang, and G.-C. Guo, “Limitations of practical multiphoton decoherence-free states,” Phys. Rev. A 72, 012308 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, and V. Berger, “Backward difference frequency generation in an AlGaAs waveguide,” Appl. Phys. Lett. 89, 031106 (2006).
[CrossRef]

M. Ravaro, M. Le Dû, J.-P. Likforman, S. Ducci, V. Berger, and G. Leo, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. J. Ding, J. B. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

G. Beadie, W. S. Rabinovich, and Y. J. Ding, “Transversely pumped nonlinear conversion structure which generates counterpropagating guided waves: theory and numerical modeling,” IEEE J. Quantum Electron. 37, 863–872 (2001).
[CrossRef]

J. Eur. Opt. Soc. (1)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. 3, 08030 (2008).
[CrossRef]

J. Mod. Opt. (1)

A. B. U’ren, R. Erdmann, and I. A. Walmsley, “Synthesis of time-bin entangled states via tailored group velocity matching,” J. Mod. Opt. 52, 2197–2205 (2005).
[CrossRef]

Nat. Photon. (1)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon. 1, 459–462 (2007).
[CrossRef]

Nature (2)

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001).
[CrossRef] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53(2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (7)

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora, “Entangled, guided photon generation in (1+1)-dimensional photonic crystals,” Phys. Rev. A 74, 013815 (2006).
[CrossRef]

Y.-S. Zhang, C.-F. Li, Y.-F. Huang, and G.-C. Guo, “Limitations of practical multiphoton decoherence-free states,” Phys. Rev. A 72, 012308 (2005).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Transversely pumped counterpropagating optical parametric oscillation and amplification,” Phys. Rev. Lett. 75, 429–432 (1995).
[CrossRef] [PubMed]

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

Quantum Inf. Comput. (1)

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Geometry of the ridge waveguide source and counterpropagating phase-matching scheme. Phase matching is automatically obtained in the z direction; QPM is implemented by a periodic modulation of the nonlinear susceptibility tensor along the epitaxial direction in the core of the waveguide. (b) Tunability curves: signal and idler wavelength versus pump angle of incidence θ for a pump wavelength of 775 nm . ± θ deg denotes the degeneracy angle for interaction 1 and 2, respectively.

Fig. 2
Fig. 2

Scheme of the ridge microcavity source: the waveguide core is surrounded by DBRs.

Fig. 3
Fig. 3

Electric field amplitude of the pump field and of the generated guided modes inside the microcavity and refractive index profile at 1.55 μm for the three types of structures considered in our design. (a) Microcavity with cladding and added Bragg mirrors ( N 1 = 10 , N 2 = 30 ). The epitaxial structure is (100) GaAs substrate / lower DBR 30 × [ Al 0.90 Ga 0.10 As ( 63 nm ) / Al 0.25 Ga 0.75 As ( 55 nm )] / cladding  Al 0.90 Ga 0.10 As ( 1146 nm ) / core  4 × [ Al 0.80 Ga 0.20 As ( 124 nm ) / Al 0.25 Ga 0.75 As ( 111 nm )] / cladding  Al 0.90 Ga 0.10 As ( 1146 nm ) / upper DBR 10 × [ Al 0.25 Ga 0.75 As ( 63 nm ) / Al 0.90 Ga 0.10 As ( 55 nm )] + Al 0.25 Ga 0.75 As ( 63 nm ). (b) Integrated microcavity with Bragg mirrors playing the double role of cladding for the generated modes and mirrors for the pump beam ( N 1 = 14 , N 2 = 36 ). The epitaxial structure is (100) GaAs substrate / lower DBR 36 × [ Al 0.90 Ga 0.10 As ( 71 nm ) / Al 0.35 Ga 0.65 As ( 50 nm )] / buffer  Al 0.90 Ga 0.10 As ( 125 nm ) / core  Al 0.25 Ga 0.75 As ( 104 nm ) + 4 × [ Al 0.80 Ga 0.20 As ( 129 nm ) / Al 0.25 Ga 0.75 As ( 104 nm )] / buffer  Al 0.90 Ga 0.10 As ( 125 nm ) / upper DBR  14 × [ Al 0.35 Ga 0.65 As ( 50 nm ) / Al 0.90 Ga 0.10 As ( 71 nm )] / cap layer  GaAs ( 50 nm ). (c) Microcavity without QPM and with AlOx Bragg mirrors ( N 1 = 3 , N 2 = 5 ). The epitaxial structure is (100) GaAs substrate / lower DBR 5 × [ Al 0.25 Ga 0.75 As ( 56 nm ) / AlOx ( 121 nm )] / core  Al 0.25 Ga 0.75 As ( 222 nm ) / upper DBR  3 × [AlOx ( 121 nm ) / Al 0.25 Ga 0.75 As ( 56 nm )].

Fig. 4
Fig. 4

Comparison of the different types of structures in terms of nonlinear conversion efficiency enhancement η cav / η 0 versus cavity linewidth Δ λ cav . In the case of microcavities with both AlGaAs cladding and Bragg mirrors or AlOx cladding, each dot corresponds to a different number N 1 of bilayers in the upper DBR (the number N 2 of bilayers in the lower DBR is high enough so that adding one bilayer to it has no effect). For the integrated microcavities, with either symmetrical (SBM) or asymmetrical (ABM) Bragg mirrors, the optimum choice is represented by the two straight lines. The star represents the calculated parameters of the sample that was grown for the experiments.

Fig. 5
Fig. 5

Experimental setup for the SESHG experiment.

Fig. 6
Fig. 6

CCD images of the interference fringes at the waveguide surface. (a) Uniform sample: the whole length of the guide contributes to the nonlinear process at resonance wavelength. (b) Nonuniform sample: each part of the guide has a different resonance wavelength.

Fig. 7
Fig. 7

(a) SESHG power versus wavelength. The Lorentzian envelope is due to the microcavity resonance. The modulation is due to the Fabry–Perot oscillations for the TE and TM eigenfields. (b) SESHG power versus FF power. The solid line is a squared power-law fitting function y x 1.99 .

Fig. 8
Fig. 8

(a) Experimental setup for coincidence counting. IF and FF represent an interference filter ( 10 nm bandwidth) and a fibered filter ( 1 nm bandwidth), respectively, used to reduce luminescence noise. SPAD A and B are two single-photon avalanche photodiodes. (b) Coincidence histogram acquired in 40 min for a pump peak power of 2 W . Inset: zoom on the coincidence peak.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ ω P = ω S + ω I ω P sin θ = ω S n TE ( ω S ) ω I n TM ( ω I ) ( interaction   1 ) { ω P = ω S + ω I ω P sin θ = ω S n TM ( ω S ) ω I n TE ( ω I ) ( interaction   2 ) ,
E p int E p ext = 2 2 F π n guide ( 1 + | t 2 / t 1 | 2 ) .
η cav η 0 = 2 ( 1 + n guide ) 2 π n guide F ( 1 + | t 2 / t 1 | 2 ) .
η ( λ ) = η cav 1 1 + 4 ( λ λ res Δ λ cav ) 2 ,
λ res ( θ ) 2 L eff m ( 1 θ 2 2 n 2 ) ,
λ res ( θ ) λ res ( 0 ) ( 1 θ 2 2 n 2 ) = λ res ( 0 ) a θ 2 .
λ res T = 2 L m n T = λ res ( T = 0 ) 1 n n T .
η cav L = 1 L P SHG ( P TE P TM + P TM P TE ) ,
P TE P TM = R TM P out TE P out TM T TE T TM η obj 2 ,
P TM P TE = R TE P out TE P out TM T TE T TM η obj 2 .

Metrics