Abstract

We describe an optimized setup for two-dimensional (2D) IR spectroscopy, which can be implemented at low additional cost and with standard optics in any laboratory equipped for femtosecond mid-IR spectroscopy. An interferometer produces a pair of intense pump pulses, whose interferogram is simultaneously recorded and directly yields the relative phase needed for the calculation of absorptive 2D spectra. We analyze different sampling methods based on a realistic noise model and introduce fast population time modulation as an alternative to the use of choppers in the suppression of scatter. Signal levels are compared to those of a photon-echo setup.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
    [CrossRef]
  2. S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 (2001) and all articles in that issue.
  3. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [CrossRef] [PubMed]
  4. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
    [CrossRef] [PubMed]
  5. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
    [CrossRef] [PubMed]
  6. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U. S. A. 104, 14190–14196 (2007).
    [CrossRef] [PubMed]
  7. J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007).
    [CrossRef] [PubMed]
  8. J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
    [CrossRef] [PubMed]
  9. Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
    [CrossRef] [PubMed]
  10. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys. 57, 249–321 (2009).
    [CrossRef]
  11. S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” 42, 1207–1209 (2009) and all articles in that issue.
  12. P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
    [CrossRef]
  13. M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001).
    [CrossRef] [PubMed]
  14. M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003).
    [CrossRef]
  15. M. Khalil, N. Demirdröven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
    [CrossRef] [PubMed]
  16. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665–2667 (2008).
    [CrossRef] [PubMed]
  17. V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
    [CrossRef] [PubMed]
  18. J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008).
    [CrossRef] [PubMed]
  19. P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
    [CrossRef] [PubMed]
  20. J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
    [CrossRef] [PubMed]
  21. S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
    [CrossRef]
  22. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump–probe geometry,” Opt. Lett. 32, 2966–2968 (2007).
    [CrossRef] [PubMed]
  23. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006).
    [CrossRef] [PubMed]
  24. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
    [CrossRef] [PubMed]
  25. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
    [CrossRef] [PubMed]
  26. W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009).
    [CrossRef] [PubMed]
  27. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007).
    [CrossRef] [PubMed]
  28. M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1, 85–88 (1979).
    [CrossRef]
  29. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474(1995).
    [CrossRef]
  30. A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
    [CrossRef]
  31. M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality : the pharmacological, biological, and chemical consequences of molecular asymmetry 21, E298–E306(2009).
    [CrossRef]
  32. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express , 18, 27067–27078 (2010).
    [CrossRef]
  33. W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008).
    [CrossRef] [PubMed]
  34. J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

2010

2009

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality : the pharmacological, biological, and chemical consequences of molecular asymmetry 21, E298–E306(2009).
[CrossRef]

W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009).
[CrossRef] [PubMed]

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys. 57, 249–321 (2009).
[CrossRef]

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

2008

2007

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump–probe geometry,” Opt. Lett. 32, 2966–2968 (2007).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007).
[CrossRef] [PubMed]

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U. S. A. 104, 14190–14196 (2007).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007).
[CrossRef] [PubMed]

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef] [PubMed]

2006

2005

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

2004

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[CrossRef] [PubMed]

2003

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003).
[CrossRef]

M. Khalil, N. Demirdröven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef] [PubMed]

2001

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001).
[CrossRef] [PubMed]

1999

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

1998

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

1995

1979

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1, 85–88 (1979).
[CrossRef]

Albrecht, A. W.

A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Andresen, E.

J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

Backus, E. H. G.

Bakker, B. H.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

Bloem, R.

Bodis, P.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Bonmarin, M.

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality : the pharmacological, biological, and chemical consequences of molecular asymmetry 21, E298–E306(2009).
[CrossRef]

Bredenbeck, J.

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[CrossRef] [PubMed]

Brixner, T.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

Brouwer, A. M.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Bruner, B. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Buma, W. J.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Cahoon, J. F.

J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008).
[CrossRef] [PubMed]

Cervetto, V.

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

Chériaux, G.

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

Chugh, B.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Chung, H. S.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Cowan, M. L.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Damrauer, N. H.

de Boeij, W. P.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

DeFlores, L. P.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump–probe geometry,” Opt. Lett. 32, 2966–2968 (2007).
[CrossRef] [PubMed]

Demirdöven, N.

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003).
[CrossRef]

Demirdröven, N.

M. Khalil, N. Demirdröven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

Donaldson, P.

Downs, M. J.

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1, 85–88 (1979).
[CrossRef]

Dwyer, J. R.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009).
[CrossRef] [PubMed]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Faeder, S. M. G.

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Fayer, M. D.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef] [PubMed]

Fleming, G. R.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

Fulmer, E. C.

Ganim, Z.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Garrett-Roe, S.

Ge, N.-H.

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001).
[CrossRef] [PubMed]

Grumstrup, E. M.

Hamm, P.

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express , 18, 27067–27078 (2010).
[CrossRef]

E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665–2667 (2008).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[CrossRef] [PubMed]

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” 42, 1207–1209 (2009) and all articles in that issue.

J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

Harris, C. B.

J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008).
[CrossRef] [PubMed]

Haukka, M.

J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

Helbing, J.

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality : the pharmacological, biological, and chemical consequences of molecular asymmetry 21, E298–E306(2009).
[CrossRef]

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[CrossRef] [PubMed]

Hochstrasser, R. M.

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U. S. A. 104, 14190–14196 (2007).
[CrossRef] [PubMed]

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001).
[CrossRef] [PubMed]

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 (2001) and all articles in that issue.

Humalamäki, N.

J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

Huse, N.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Hybl, J. D.

A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Joffre, M.

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef] [PubMed]

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Jones, K. C.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Kay, E. R.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Khalil, M.

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003).
[CrossRef]

M. Khalil, N. Demirdröven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

Kim, Y. S.

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001).
[CrossRef] [PubMed]

Kolano, C.

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007).
[CrossRef] [PubMed]

Korppi-Tommola, J.

J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

Kubarych, K. J.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys. 57, 249–321 (2009).
[CrossRef]

Kuehn, W.

W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009).
[CrossRef] [PubMed]

Kwak, K.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef] [PubMed]

Leigh, D. A.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Lepetit, L.

Lewis, K. L.

Lim, M.

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007).
[CrossRef] [PubMed]

Mateo-Alonso, A.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Miller, R. J. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Montgomery, M. A.

Mukamel, S.

S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 (2001) and all articles in that issue.

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” 42, 1207–1209 (2009) and all articles in that issue.

Myers, J. A.

Nibbering, E. T. J.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

Nicodemus, R. A.

Ogilvie, J. P.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys. 57, 249–321 (2009).
[CrossRef]

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
[CrossRef] [PubMed]

Panman, M. R.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Prato, M.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

Raine, K. W.

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1, 85–88 (1979).
[CrossRef]

Reimann, K.

W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009).
[CrossRef] [PubMed]

Sawyer, K. R.

J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008).
[CrossRef] [PubMed]

Schlegel, J. P.

J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008).
[CrossRef] [PubMed]

Shim, S. H.

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007).
[CrossRef] [PubMed]

Smith, A. W.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006).
[CrossRef] [PubMed]

Strzalka, H.

Tanimura, Y.

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” 42, 1207–1209 (2009) and all articles in that issue.

Tekavec, P. F.

Tokmakoff, A.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump–probe geometry,” Opt. Lett. 32, 2966–2968 (2007).
[CrossRef] [PubMed]

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003).
[CrossRef]

M. Khalil, N. Demirdröven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

Wiersma, D. A.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

Woerner, M.

W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009).
[CrossRef] [PubMed]

Woutersen, S.

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Xiong, W.

Zanni, M. T.

W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007).
[CrossRef] [PubMed]

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006).
[CrossRef] [PubMed]

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001).
[CrossRef] [PubMed]

Zheng, J.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef] [PubMed]

Acc. Chem. Res.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef] [PubMed]

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009).
[CrossRef] [PubMed]

Adv. At. Mol. Opt. Phys.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys. 57, 249–321 (2009).
[CrossRef]

Annu. Rev. Phys. Chem.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef] [PubMed]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

Chem. Phys. Chem.

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007).
[CrossRef] [PubMed]

Chirality : the pharmacological, biological, and chemical consequences of molecular asymmetry

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality : the pharmacological, biological, and chemical consequences of molecular asymmetry 21, E298–E306(2009).
[CrossRef]

J. Chem. Phys.

W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003).
[CrossRef]

J. Phys. Chem. B

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

Nature

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[CrossRef] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Khalil, N. Demirdröven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

Precis. Eng.

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1, 85–88 (1979).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007).
[CrossRef] [PubMed]

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001).
[CrossRef] [PubMed]

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U. S. A. 104, 14190–14196 (2007).
[CrossRef] [PubMed]

Science

J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008).
[CrossRef] [PubMed]

Other

J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” 42, 1207–1209 (2009) and all articles in that issue.

S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 (2001) and all articles in that issue.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of a FT 2D experiment in a (left) photon-echo geometry and a (right) pump-probe geometry. In the echo geometry, so-called rephasing and nonrephasing signals are emitted in different directions. They are recorded by the same detector after inverting the time order of pulses 1 and 2 and must be added to obtain purely absorptive 2D spectra. In the pump-probe geometry, pulses 1 and 2 are collinear, and the sum of rephasing and nonrephasing signals is measured directly.

Fig. 2
Fig. 2

(a) Schematic representation of the setup. (b) Beam path of the mid-IR light in the interferometer. A pyroelectric detector records pump pulse interferograms during every coherence time scan. (c) Beam path for the HeNe laser propagating 2 cm above the mid-IR beam with separate beam splitters BS1′ and BS2′ and static mirrors M3′ and M4′ for independent alignment. Interference between a circular polarized beam ( λ / 4 plate in the static interferometer arm) and a linear polarized beam gives rise to two orthogonally polarized signals with a relative 90 ° phase shift used for quadrature fringe counting. Mid-IR beam splitters BS1 and BS2 may also be replaced by polarizers for measurements with perpendicular polarized pump pulses.

Fig. 3
Fig. 3

Phase determination: (a) central section of the pump pulse interferogram recorded by the pyroelectric detector (circles). Open squares show the slope of the spectral phase near the band center after FT of the interferogram starting at different time bins κ 0 (scale on left axis). (b) Spectrum | A ( ω 1 ) | of the pump pulses (solid black curve) and flat spectral phase ϕ K ( ω 1 ) (blue curve) obtained after FT of the interferogram with κ 0 = K = 106 . Dotted curves show ϕ κ 0 ( ω 1 ) for κ 0 = 99 and κ 0 = 113 . The black dashed curve in (b) indicates the weak intensity scaling caused by averaging data over one HeNe laser period.

Fig. 4
Fig. 4

Effect of interferometer scan speed and chopping on signal to noise, illustrated by simulated Fourier spectra of two weak absorbers at 2000 and 2100 cm 1 (intensity ratio 10 1 ). (a), (b) Slow t 1 motor motion ( 0.06 mm / s ). (c), (d) Fast t 1 motor motion ( 1.25 mm / s ). Blue [(b) and (d)] and red [(a) and (c)] curves represent Fourier transformed data with and without chopping, respectively. The insets in each graph show the simulated time domain data. The smooth curves in (c) indicate the analytic results.

Fig. 5
Fig. 5

Absorptive 2D spectra at of the Osmium carbonyl complex Os(dcbpy) I 2 ( CO ) 2 attached to the porous surface of a nanoporous TiO 2 film. Two sets of diagonal and cross peaks originate from two different binding configurations [34] ( t 1 FT of the array detector signal with the phase factor ϕ K automatically determined from the pump pulse interferogram, waiting time t 2 = 1.5 ps ). (a) Data recorded without pseudo-phase modulation. (b) Same sample spot but with t 2 delay modulated at f rep / 4 between t 2 ± π / ω 0 to suppress scatter to second order. (c) Same data as in (b) after correction for the pump pulse spectrum.

Fig. 6
Fig. 6

(a) Amplitude of the residual scattering signal cos n ( π ω 3 / ω 0 ) (in percentage of the original) after summing over two (black solid curve, n = 1 ), three (red dashed curve, n = 2 ), or four (green dotted curve, n = 3 ) population delays in steps of π / ω 0 . (b) Fast population time modulation, producing the correct amplitude and multiplicity of delays. Black solid curve, modulation amplitude π / ( 2 ω 0 ) , f rep / 2 ; red dashed curve, modulation amplitude π / ( 2 ω 0 ) , f rep / 4 ; green dotted curve, two modulators, amplitude ratio ( 1 + 2 ) 1 , frequencies f rep / 8 and 3 f rep / 8 , relative phase shift π / 4 .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A ( ω 1 [ j ] ) = κ = 1 N I ( t 1 [ κ ] ) exp ( 2 π i ( κ κ 0 ) ( j 1 ) N ) = | A ( ω 1 [ j ] ) | exp ( i ϕ κ 0 ( ω 1 [ j ] ) ) .
S ( ω 3 , t 2 , t 1 ) | E probe ( ω 3 ) + i ω 3 [ P ( 1 ) ( ω 3 ) + P pp 1 ( 3 ) ( ω 3 , t 2 ) + P pp 2 ( 3 ) ( ω 3 , t 2 , t 1 ) + P 2 D ( 3 ) ( ω 3 , t 2 , t 1 ) ] + E scatter ( ω 3 , t 2 , t 1 ) | 2 .
S 2 D ( ω 3 , t 2 , ω 1 [ j ] ) = Re [ Δ t κ = 1 N S ¯ ( ω 3 , t 2 , t 1 [ κ + K 1 ] ) × exp ( 2 π i ( κ 1 ) ( j 1 ) N i ϕ K ) ] ,
I bin ( ω 1 ) = sin ( Δ t ω 1 ) 2 π Δ t ω 1 .
S scatter ( ω 3 , t 2 , t 1 ) | E probe ( ω 3 ) + β [ E pump 1 ( ω 3 , t 2 ) + E pump 2 ( ω 3 , t 2 , t 1 ) ] | 2 .
S echo / S pump - probe 1 4 α / ( 1 3 ) 3 0.77 α .
( I probe / I ref ) [ i ] = const + sig ( t [ i ] ) + a noise Δ I [ i ] .
Δ I [ i + 1 ] = Δ I [ i ] ( 1 κ ) + κ × Rnd [ 2 2 κ ] ,
sig ( t [ i ] ) = 10 3 × θ ( t [ i ] ) ( cos ( ω 1 t [ i ] ) e t [ i ] / τ 1 + 0.1 cos ( ω 2 t [ i ] ) e t [ i ] / τ 2 ) .
sc 0 ( ω 3 , t ) = | E probe + E scatter | 2 | E probe | 2 = 1 + β 2 + 2 β cos ( t ω 3 + ψ ) ,
sc 1 ( ω 3 , t ) = 1 2 [ sc 0 ( ω 3 , t π 2 ω 0 ) + sc 0 ( ω 3 , t + π 2 ω 0 ) ] = 1 + β 2 + 2 β cos ( ω 3 t + ψ ) cos ( π ω 3 ω 0 ) .
sc n ( ω 3 , t ) = 1 2 [ sc n 1 ( ω 3 , t π 2 ω 0 ) + sc n 1 ( ω 3 , t + π 2 ω 0 ) ] = 1 + β 2 + 2 β cos ( ω 3 t + ψ ) cos n ( π ω 3 ω 0 ) ,

Metrics