Abstract

A technique is proposed for generating sub-10fs deep ultraviolet (DUV) pulses with Gaussian temporal and spectral profiles. In this approach, a broadband DUV pulse with a negative frequency chirp is generated and compressed by normal group-velocity dispersion in a transparent medium. The pulse shape is not significantly distorted by high-order spectral phase distortion. In principle, nearly transform-limited sub-6fs UV pulses with pulse energies of several tens of microjoules are expected to be generated. Numerical simulations indicate that a Ti:sapphire chirped-pulse amplifier with a pulse energy of several millijoules and a pulse duration of 35fs can be used to generate high-energy sub-6fs UV pulses. The technique is partially demonstrated by an experiment using a low-power Ti:sapphire chirped-pulse amplifier to generate low-energy sub-10fs single DUV pulses with waveforms that quantitatively agree with those predicted by the numerical simulations. This technique can be used to generate high-energy sub-10fs DUV pulses with Gaussian temporal and spectral profiles for ultrafast spectroscopy in the gas phase as well as the liquid and solid phases.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
    [CrossRef]
  2. E. Matsubara, K. Yamane, T. Sekikawa, and M. Yamashita, “Generation of 2.6fs optical pulses using induced-phase modulation in a gas-filled hollow fiber,” J. Opt. Soc. Am. B 24, 985–989 (2007).
    [CrossRef]
  3. J. Park, J. Lee, and C. H. Nam, “Generation of 1.5 cycle 0.3TW laser pulses using a hollow-fiber pulse compressor,” Opt. Lett. 34, 2342–2344 (2009).
    [CrossRef] [PubMed]
  4. O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8fs pulses at 400nm,” Opt. Lett. 24, 34–36 (1999).
    [CrossRef]
  5. Y. Kida, S. Zaitsu, and T. Imasaka, “Generation of intense 11fs ultraviolet pulses using phase modulation by two types of coherent molecular motions,” Opt. Express 16, 13492–13498 (2008).
    [CrossRef] [PubMed]
  6. J. Liu, Y. Kida, T. Teramoto, and T. Kobayashi, “Generation of stable sub-10fs pulses at 400nm in a hollow fiber for UV pump-probe experiment,” Opt. Express 18, 4664–4672 (2010).
    [CrossRef] [PubMed]
  7. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
    [CrossRef]
  8. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
    [CrossRef] [PubMed]
  9. T. Fuji, T. Horio, and T. Suzuki, “Generation of 12fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett. 32, 2481–2483 (2007).
    [CrossRef] [PubMed]
  10. T. Nagy and P. Simon, “Generation of 200μJ, sub-25fs deep-UV pulses using a noble-gas-filled hollow fiber,” Opt. Lett. 34, 2300–2302 (2009).
    [CrossRef] [PubMed]
  11. M. Beutler, M. Ghotbi, F. Noack, D. Brida, C. Manzoni, and G. Cerullo, “Generation of high-energy sub-20fs pulses tunable in the 250–310nm region by frequency doubling of a high-power noncollinear optical parametric amplifier,” Opt. Lett. 34, 710–712 (2009).
    [CrossRef] [PubMed]
  12. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef] [PubMed]
  13. S. A. Trushin, K. Kosma, W. Fuß, and W. E. Schmid, “Sub-10fs supercontinuum radiation generated by filamentation of few-cycle 800nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
    [CrossRef] [PubMed]
  14. U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
    [CrossRef]
  15. J. Wojtkiewicz and C. G. Durfee, “Hollow-fiber OP-CPA for energetic ultrafast ultraviolet pulse generation,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (IEEE, 2002), pp. 423–424.
    [CrossRef]
  16. J. Wojtkiewicz, K. Hudek, and C. G. Durfee, “Chirped-pulse frequency conversion of ultrafast pulses to the deep-UV,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMK5.
    [PubMed]
  17. P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79, 1027–1032 (2004).
    [CrossRef]
  18. I. Babushkin and J. Herrmann, “High energy sub-10fs pulse generation in vacuum ultraviolet using chirped four wave mixing in hollow waveguides,” Opt. Express 16, 17774–17779 (2008).
    [CrossRef] [PubMed]
  19. T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electronic transition studied by using real-time vibrational spectroscopy,” New J. Phys. 10, 065009(2008).
    [CrossRef]
  20. T. Kobayashi and Z. Wang, “Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface,” New J. Phys. 10, 065015 (2008).
    [CrossRef]
  21. Y. Kida, J. Liu, T. Teramoto, and T. Kobayashi, “Sub-10fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing,” Opt. Lett. 35, 1807–1809 (2010).
    [CrossRef] [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  23. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
    [CrossRef]
  24. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
    [CrossRef]
  25. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
    [CrossRef]
  26. A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
    [CrossRef]
  27. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
    [CrossRef]
  28. M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. B 68, 2793–2795 (1996).
  29. M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248nm,” Opt. Commun. 103, 153–160 (1993).
    [CrossRef]
  30. J.-H. Klein-Wiele, T. Nagy, and P. Simon, “Hollow-fiber pulse compressor for KrF lasers,” Appl. Phys. B 82, 567–570 (2006).
    [CrossRef]
  31. C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron. 46, 433–437 (2010).
    [CrossRef]
  32. A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. Lond. Ser. A 259, 424–429 (1960).
    [CrossRef]
  33. J.-C. Diels and W. Rudolph, “Light–Matter Interaction” in Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic, 2006), p. 173.
  34. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [CrossRef] [PubMed]
  35. J. D. Kafka and T. Baer, “Prism-pair dispersive delay lines in optical pulse compression,” Opt. Lett. 12, 401–403 (1987).
    [CrossRef] [PubMed]
  36. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  37. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608(1994).
    [CrossRef]
  38. M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, and K. Nagasaka, “Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure,” J. Opt. Soc. Am. B 20, 2002–2011(2003).
    [CrossRef]
  39. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10fs, 5mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116(2005).
    [CrossRef]
  40. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  41. K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009), http://jjap.jsap.jp/.
    [CrossRef]
  42. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0fs, 5.0mJ pulses at 1 kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
    [CrossRef] [PubMed]
  43. S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
    [CrossRef]
  44. A. Stalmashonak, N. Zhavoronkov, I. V. Hertel, S. Vetrov, and K. Schmid, “Spatial control of femtosecond laser system output with submicroradian accuracy,” Appl. Opt. 45, 1271–1274 (2006).
    [CrossRef] [PubMed]

2010

2009

2008

U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
[CrossRef]

I. Babushkin and J. Herrmann, “High energy sub-10fs pulse generation in vacuum ultraviolet using chirped four wave mixing in hollow waveguides,” Opt. Express 16, 17774–17779 (2008).
[CrossRef] [PubMed]

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electronic transition studied by using real-time vibrational spectroscopy,” New J. Phys. 10, 065009(2008).
[CrossRef]

T. Kobayashi and Z. Wang, “Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface,” New J. Phys. 10, 065015 (2008).
[CrossRef]

Y. Kida, S. Zaitsu, and T. Imasaka, “Generation of intense 11fs ultraviolet pulses using phase modulation by two types of coherent molecular motions,” Opt. Express 16, 13492–13498 (2008).
[CrossRef] [PubMed]

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

2007

2006

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

J.-H. Klein-Wiele, T. Nagy, and P. Simon, “Hollow-fiber pulse compressor for KrF lasers,” Appl. Phys. B 82, 567–570 (2006).
[CrossRef]

A. Stalmashonak, N. Zhavoronkov, I. V. Hertel, S. Vetrov, and K. Schmid, “Spatial control of femtosecond laser system output with submicroradian accuracy,” Appl. Opt. 45, 1271–1274 (2006).
[CrossRef] [PubMed]

2005

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10fs, 5mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116(2005).
[CrossRef]

2004

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79, 1027–1032 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[CrossRef] [PubMed]

2003

2000

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999

1998

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

1997

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

1996

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. B 68, 2793–2795 (1996).

1994

1993

M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248nm,” Opt. Commun. 103, 153–160 (1993).
[CrossRef]

1988

S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
[CrossRef]

1987

1985

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[CrossRef]

1984

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

1960

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. Lond. Ser. A 259, 424–429 (1960).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Apolonski, A.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Babushkin, I.

Backus, S.

Baer, T.

Baum, P.

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79, 1027–1032 (2004).
[CrossRef]

Becker, P. C.

Bergé, L.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Beutler, M.

Bohman, S.

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

Brée, C.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron. 46, 433–437 (2010).
[CrossRef]

Brida, D.

Cavalieri, A. L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Cerullo, G.

Chakraborty, H. S.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

Couairon, A.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

Cruz, C. H. B.

Dalgarno, A.

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. Lond. Ser. A 259, 424–429 (1960).
[CrossRef]

DeLong, K. W.

Demircan, A.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron. 46, 433–437 (2010).
[CrossRef]

Diels, J.-C.

J.-C. Diels and W. Rudolph, “Light–Matter Interaction” in Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic, 2006), p. 173.

Dühr, O.

Durfee, C. G.

C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[CrossRef]

J. Wojtkiewicz, K. Hudek, and C. G. Durfee, “Chirped-pulse frequency conversion of ultrafast pulses to the deep-UV,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMK5.
[PubMed]

J. Wojtkiewicz and C. G. Durfee, “Hollow-fiber OP-CPA for energetic ultrafast ultraviolet pulse generation,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (IEEE, 2002), pp. 423–424.
[CrossRef]

Fieß, M.

U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Fork, R. L.

Fuji, T.

Fuß, W.

Gaarde, M. B.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

Ghotbi, M.

Gordon, J. P.

Goulielmakis, E.

U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Graf, U.

Grafström, S.

S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
[CrossRef]

Harbarth, U.

S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
[CrossRef]

Hatayama, M.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10fs, 5mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116(2005).
[CrossRef]

M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, and K. Nagasaka, “Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure,” J. Opt. Soc. Am. B 20, 2002–2011(2003).
[CrossRef]

Helml, W.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Herrmann, J.

Hertel, I. V.

Hooker, C. J.

M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248nm,” Opt. Commun. 103, 153–160 (1993).
[CrossRef]

Horio, T.

Horvath, B.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Hudek, K.

J. Wojtkiewicz, K. Hudek, and C. G. Durfee, “Chirped-pulse frequency conversion of ultrafast pulses to the deep-UV,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMK5.
[PubMed]

Imasaka, T.

Iwakura, I.

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electronic transition studied by using real-time vibrational spectroscopy,” New J. Phys. 10, 065009(2008).
[CrossRef]

Kafka, J. D.

Kanai, T.

Kane, D. J.

Kapteyn, H. C.

Kida, Y.

Kienberger, R.

U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Kingston, A. E.

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. Lond. Ser. A 259, 424–429 (1960).
[CrossRef]

Klein-Wiele, J.-H.

J.-H. Klein-Wiele, T. Nagy, and P. Simon, “Hollow-fiber pulse compressor for KrF lasers,” Appl. Phys. B 82, 567–570 (2006).
[CrossRef]

Kobayashi, T.

Y. Kida, J. Liu, T. Teramoto, and T. Kobayashi, “Sub-10fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing,” Opt. Lett. 35, 1807–1809 (2010).
[CrossRef] [PubMed]

J. Liu, Y. Kida, T. Teramoto, and T. Kobayashi, “Generation of stable sub-10fs pulses at 400nm in a hollow fiber for UV pump-probe experiment,” Opt. Express 18, 4664–4672 (2010).
[CrossRef] [PubMed]

K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009), http://jjap.jsap.jp/.
[CrossRef]

T. Kobayashi and Z. Wang, “Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface,” New J. Phys. 10, 065015 (2008).
[CrossRef]

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electronic transition studied by using real-time vibrational spectroscopy,” New J. Phys. 10, 065009(2008).
[CrossRef]

Korn, G.

Kosma, K.

Kowalski, J.

S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
[CrossRef]

Krausz, F.

U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8fs pulses at 400nm,” Opt. Lett. 24, 34–36 (1999).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

Lederer, F.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Lee, J.

Lehmeier, H. J.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[CrossRef]

Leupacher, W.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[CrossRef]

Liu, J.

Lochbrunner, S.

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79, 1027–1032 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[CrossRef] [PubMed]

Manzoni, C.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Martinez, O. E.

Matsubara, E.

Midorikawa, K.

Mlejnek, M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Moloney, J. V.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Murnane, M. M.

Nagasaka, K.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10fs, 5mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116(2005).
[CrossRef]

M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, and K. Nagasaka, “Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure,” J. Opt. Soc. Am. B 20, 2002–2011(2003).
[CrossRef]

Nagy, T.

T. Nagy and P. Simon, “Generation of 200μJ, sub-25fs deep-UV pulses using a noble-gas-filled hollow fiber,” Opt. Lett. 34, 2300–2302 (2009).
[CrossRef] [PubMed]

J.-H. Klein-Wiele, T. Nagy, and P. Simon, “Hollow-fiber pulse compressor for KrF lasers,” Appl. Phys. B 82, 567–570 (2006).
[CrossRef]

Nam, C. H.

Neumann, R.

S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
[CrossRef]

Nibbering, E. T. J.

Nisoli, M.

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. B 68, 2793–2795 (1996).

Noack, F.

Noehte, S.

S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
[CrossRef]

Nurhuda, M.

Okamura, K.

K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009), http://jjap.jsap.jp/.
[CrossRef]

Park, J.

Penzkofer, A.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[CrossRef]

Pervak, V.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Riedle, E.

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79, 1027–1032 (2004).
[CrossRef]

Rudolph, W.

J.-C. Diels and W. Rudolph, “Light–Matter Interaction” in Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic, 2006), p. 173.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Schmid, K.

Schmid, W. E.

Schnürer, M.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Schultze, M.

U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Sekikawa, T.

Shank, C. V.

Shaw, M. J.

M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248nm,” Opt. Commun. 103, 153–160 (1993).
[CrossRef]

Silvestri, S. D.

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. B 68, 2793–2795 (1996).

Simon, P.

T. Nagy and P. Simon, “Generation of 200μJ, sub-25fs deep-UV pulses using a noble-gas-filled hollow fiber,” Opt. Lett. 34, 2300–2302 (2009).
[CrossRef] [PubMed]

J.-H. Klein-Wiele, T. Nagy, and P. Simon, “Hollow-fiber pulse compressor for KrF lasers,” Appl. Phys. B 82, 567–570 (2006).
[CrossRef]

Skupin, S.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Sokollik, T.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Stalmashonak, A.

Steinmeyer, G.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron. 46, 433–437 (2010).
[CrossRef]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Stibenz, G.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Suda, A.

Suzuki, T.

Svelto, O.

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. B 68, 2793–2795 (1996).

Tempea, G.

Teramoto, T.

Trebino, R.

Trushin, S. A.

Uiberacker, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Veisz, L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Vetrov, S.

Wang, Z.

T. Kobayashi and Z. Wang, “Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface,” New J. Phys. 10, 065015 (2008).
[CrossRef]

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electronic transition studied by using real-time vibrational spectroscopy,” New J. Phys. 10, 065009(2008).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Wilson, D. C.

M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248nm,” Opt. Commun. 103, 153–160 (1993).
[CrossRef]

Wojtkiewicz, J.

J. Wojtkiewicz and C. G. Durfee, “Hollow-fiber OP-CPA for energetic ultrafast ultraviolet pulse generation,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (IEEE, 2002), pp. 423–424.
[CrossRef]

J. Wojtkiewicz, K. Hudek, and C. G. Durfee, “Chirped-pulse frequency conversion of ultrafast pulses to the deep-UV,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMK5.
[PubMed]

Wright, E. M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Yakovlev, V. S.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Yamaguchi, S.

Yamane, K.

Yamashita, M.

Zaitsu, S.

Zhavoronkov, N.

A. Stalmashonak, N. Zhavoronkov, I. V. Hertel, S. Vetrov, and K. Schmid, “Spatial control of femtosecond laser system output with submicroradian accuracy,” Appl. Opt. 45, 1271–1274 (2006).
[CrossRef] [PubMed]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79, 1027–1032 (2004).
[CrossRef]

J.-H. Klein-Wiele, T. Nagy, and P. Simon, “Hollow-fiber pulse compressor for KrF lasers,” Appl. Phys. B 82, 567–570 (2006).
[CrossRef]

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. B 68, 2793–2795 (1996).

Appl. Phys. Lett.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10fs, 5mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116(2005).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

IEEE J. Quantum Electron.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron. 46, 433–437 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009), http://jjap.jsap.jp/.
[CrossRef]

New J. Phys.

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electronic transition studied by using real-time vibrational spectroscopy,” New J. Phys. 10, 065009(2008).
[CrossRef]

T. Kobayashi and Z. Wang, “Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface,” New J. Phys. 10, 065015 (2008).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007).
[CrossRef]

Opt. Commun.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[CrossRef]

M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248nm,” Opt. Commun. 103, 153–160 (1993).
[CrossRef]

S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65, 121–126 (1988).
[CrossRef]

Opt. Express

Opt. Lett.

C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[CrossRef] [PubMed]

T. Fuji, T. Horio, and T. Suzuki, “Generation of 12fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett. 32, 2481–2483 (2007).
[CrossRef] [PubMed]

T. Nagy and P. Simon, “Generation of 200μJ, sub-25fs deep-UV pulses using a noble-gas-filled hollow fiber,” Opt. Lett. 34, 2300–2302 (2009).
[CrossRef] [PubMed]

M. Beutler, M. Ghotbi, F. Noack, D. Brida, C. Manzoni, and G. Cerullo, “Generation of high-energy sub-20fs pulses tunable in the 250–310nm region by frequency doubling of a high-power noncollinear optical parametric amplifier,” Opt. Lett. 34, 710–712 (2009).
[CrossRef] [PubMed]

R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

S. A. Trushin, K. Kosma, W. Fuß, and W. E. Schmid, “Sub-10fs supercontinuum radiation generated by filamentation of few-cycle 800nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[CrossRef] [PubMed]

J. Park, J. Lee, and C. H. Nam, “Generation of 1.5 cycle 0.3TW laser pulses using a hollow-fiber pulse compressor,” Opt. Lett. 34, 2342–2344 (2009).
[CrossRef] [PubMed]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8fs pulses at 400nm,” Opt. Lett. 24, 34–36 (1999).
[CrossRef]

Y. Kida, J. Liu, T. Teramoto, and T. Kobayashi, “Sub-10fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing,” Opt. Lett. 35, 1807–1809 (2010).
[CrossRef] [PubMed]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
[CrossRef] [PubMed]

J. D. Kafka and T. Baer, “Prism-pair dispersive delay lines in optical pulse compression,” Opt. Lett. 12, 401–403 (1987).
[CrossRef] [PubMed]

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0fs, 5.0mJ pulses at 1 kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
[CrossRef] [PubMed]

Phys. Rev. A

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

Phys. Rev. E

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Phys. Rev. Lett.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

Proc. R. Soc. Lond. Ser. A

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. Lond. Ser. A 259, 424–429 (1960).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Other

J.-C. Diels and W. Rudolph, “Light–Matter Interaction” in Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic, 2006), p. 173.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

J. Wojtkiewicz and C. G. Durfee, “Hollow-fiber OP-CPA for energetic ultrafast ultraviolet pulse generation,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (IEEE, 2002), pp. 423–424.
[CrossRef]

J. Wojtkiewicz, K. Hudek, and C. G. Durfee, “Chirped-pulse frequency conversion of ultrafast pulses to the deep-UV,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMK5.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme for temporal gating of the up-chirp component of the self-phase-modulated idler for generating a linearly chirped signal with a Gaussian spectrum. UC and DC represent up-chirp and down-chirp, respectively. A down-chirp signal is generated by the interaction between a down-chirp pump (NUV) and the up-chirp component of a self-phase-modulated idler (NIR).

Fig. 2
Fig. 2

Schematic of the experimental scheme.

Fig. 3
Fig. 3

Simulated (dotted curves; the chirp rate of the idler is 500 fs 2 ) and experimental (solid curves) pulse shapes. Spectra of the (a) idler and (c) signal. (b) Temporal intensity profiles and instantaneous frequency change Δ ω with respect to time of the self-phase-modulated idler. (d) Temporal intensity profile of the compressed signal. In (a) and (c), the intensity-weighted average frequency of each spectrum is set to zero. The broken curve in (a) indicates the spectrum of the idler simulated using the estimated chirp rate.

Fig. 4
Fig. 4

Simulated pulse shapes: (a) temporal intensity profile and instantaneous frequency change of the self-phase-modulated idler (solid curve) and temporal intensity profile of the pump pulse (broken curve). (b) Spectra of the idler (broken curve) and signal (solid curve). (c) Temporal intensity profile and instantaneous frequency change with respect to time. (d) Temporal intensity profile of the compressed signal (solid curve) and the inverse Fourier transform of the spectrum in (c). In (b), the carrier frequency corresponding to a wavelength of 800 nm is set to zero for the idler, while the third-harmonic wavelength of 800 nm ( 267 nm ) is set to zero for the signal.

Fig. 5
Fig. 5

Experimental pulse shapes: (a) spectra of the signal (solid curve) and self-phase-modulated idler (dotted curve). The intensity-weighted average frequency is set to zero in both curves. (b) Temporal intensity profile of the compressed signal.

Fig. 6
Fig. 6

Simulated pulse shapes: (a) Temporal intensity profile and instantaneous frequency change of the self-phase-modulated idler (solid curves) and temporal intensity profile of the pump pulse (broken curve). (b) Spectra of the idler (broken curve) and signal (solid curve). (c) Temporal intensity and instantaneous frequency change with respect to time. (d) Temporal intensity profile of the compressed signal (solid curve) and the inverse Fourier transform of the spectrum in (c) (dotted curve). In (b), the carrier frequency corresponding to a wavelength of 800 nm is set to zero for the idler, while the third-harmonic wavelength of 800 nm ( 267 nm ) is set to zero for the signal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε s ( t , z ) = ( z n 2 ω s / c A eff ) A ( t ) p 2 A ( t ) i exp [ i ( 2 ϕ p ( t ) ϕ i ( t ) + π / 2 ) ] ,
ε p / z = i D p ε p + i ( ω p / c ) n 2 T p { [ | ε p | 2 + 2 | ε i | 2 + 2 | ε s | 2 ] ε p + 2 ε p * ε i ε s exp ( i Δ β z ) } ,
ε i , s / z = i D i , s ε i , s + i ( ω i , s / c ) n 2 T i , s { [ | ε i , s | 2 + 2 | ε p | 2 + 2 | ε s , i | 2 ] ε i , s + ε p 2 ε s , i * exp ( i Δ β z ) } ,
D k = α k / 2 ( 1 / υ k 1 / υ signal ) ( / t ) i ( β k ( 2 ) / 2 ) ( 2 / t 2 ) + i ( β k ( 3 ) / 6 ) ( 3 / t 3 ) + ,
ε / z = i D ε + i ( ω / c ) n 2 T | ε | 2 ε { i ( β / 2 n 2 ρ c ) T 1 ρ + σ ρ / 2 + U W ( | ε | 2 ) ( ρ n t ρ ) / 2 | ε | 2 } ε ,
ρ / t = W ( | ε | 2 ) ( ρ n t ρ ) + ( σ / U ) ρ | ε | 2 .

Metrics