Abstract

The diffraction at mirror facets restricts the size of step mirrors for static step-mirror-based Fourier transform spectrometers. This paper discusses the miniaturization of these step mirrors and proposes a quasiperiodic approximation of Fresnel diffraction to analyze the diffraction effect. Noise caused by diffraction is classified into approximation noise and edge noise. The edge-enlarge method is developed to reduce edge noise. This method can reduce mirror facet width to less than 30 times the longest wavelength to be studied. Simulation results are given.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A, Phys. 92, 88–95 (2001).
    [CrossRef]
  2. P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).
  3. G. Lammel, S. Schweizer, and P. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators A, Phys. 92, 52–59 (2001).
    [CrossRef]
  4. J. Sin, W. H. Lee, and D. Popa, “Assembled Fourier transform micro-spectrometer,” Proc. SPIE 6109, 610904(2006).
    [CrossRef]
  5. K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
    [CrossRef]
  6. U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005).
    [CrossRef]
  7. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18, 102–107(2010).
    [CrossRef] [PubMed]
  8. J. Linkemann, F. Romero-Borja, and H. O. Tittel, “FT spectrometer with fixed mirrors using Fizeau fringes,” Proc. SPIE 1575, 184–187 (1992).
    [CrossRef]
  9. K. D. Moller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE 1992, 130–139 (1993).
    [CrossRef]
  10. K. D. Moller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt. 34, 1493–1501 (1995).
    [CrossRef] [PubMed]
  11. J. Genest, P. Tremblay, and A. Villemaire, “Throughput of tilted interferometers,” Appl. Opt. 37, 4819–4822 (1998).
    [CrossRef]
  12. A. Rosak and F. Tintó, “Progress report of a static Fourier transform spectrometer breadboard,” in Proceedings of the 5th International Conference on Space Optics (ESA Publications Division, 2004), pp. 67–71.
  13. F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
    [CrossRef]
  14. C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.
  15. A. Lacan, F.-M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18, 8311–8331(2010).
    [CrossRef] [PubMed]
  16. E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A Pure Appl. Opt. 2, 519(2000).
    [CrossRef]
  17. Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
    [CrossRef]
  18. B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).
  19. G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008).
    [CrossRef]

2010 (3)

2009 (1)

Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
[CrossRef]

2008 (2)

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008).
[CrossRef]

2006 (3)

P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).

J. Sin, W. H. Lee, and D. Popa, “Assembled Fourier transform micro-spectrometer,” Proc. SPIE 6109, 610904(2006).
[CrossRef]

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
[CrossRef]

2005 (1)

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005).
[CrossRef]

2001 (2)

G. Lammel, S. Schweizer, and P. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators A, Phys. 92, 52–59 (2001).
[CrossRef]

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A, Phys. 92, 88–95 (2001).
[CrossRef]

2000 (1)

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A Pure Appl. Opt. 2, 519(2000).
[CrossRef]

1998 (1)

1995 (1)

1993 (1)

K. D. Moller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE 1992, 130–139 (1993).
[CrossRef]

1992 (1)

J. Linkemann, F. Romero-Borja, and H. O. Tittel, “FT spectrometer with fixed mirrors using Fizeau fringes,” Proc. SPIE 1575, 184–187 (1992).
[CrossRef]

Bernard, F.

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Brachet, F.

A. Lacan, F.-M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18, 8311–8331(2010).
[CrossRef] [PubMed]

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Bréon, F.-M.

Buil, C.

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Camy-Peyret, C.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Cansot, E.

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Casteras, C.

A. Lacan, F.-M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18, 8311–8331(2010).
[CrossRef] [PubMed]

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Chen, L.

Chengshan, G.

G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008).
[CrossRef]

Chuantao, L.

G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008).
[CrossRef]

Clerbaux, C.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Coheur, P.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Courau, E.

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Etcheto, P.

Fu, J.-G.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Fu, Z.-H.

P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).

Genest, J.

Hébert, P.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Hébert, P.-J.

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Henry, P.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Ivanov, E. V.

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A Pure Appl. Opt. 2, 519(2000).
[CrossRef]

Jiang, P.-P.

P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).

Jun, Z.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Kong, S. H.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A, Phys. 92, 88–95 (2001).
[CrossRef]

Kong, Y.-M.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
[CrossRef]

Korvink, J. G.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005).
[CrossRef]

Krishnamoorthy, U.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
[CrossRef]

Kyotoku, B. B. C.

Lacan, A.

A. Lacan, F.-M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18, 8311–8331(2010).
[CrossRef] [PubMed]

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Lammel, G.

G. Lammel, S. Schweizer, and P. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators A, Phys. 92, 52–59 (2001).
[CrossRef]

Lavanant, L.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Lee, D.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
[CrossRef]

Lee, W. H.

J. Sin, W. H. Lee, and D. Popa, “Assembled Fourier transform micro-spectrometer,” Proc. SPIE 6109, 610904(2006).
[CrossRef]

Liang, J.-Q.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
[CrossRef]

Liang, Z.-Z.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
[CrossRef]

Linkemann, J.

J. Linkemann, F. Romero-Borja, and H. O. Tittel, “FT spectrometer with fixed mirrors using Fizeau fringes,” Proc. SPIE 1575, 184–187 (1992).
[CrossRef]

Lipson, M.

Loesel, J.

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Lv, J.-G.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Mohr, J.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005).
[CrossRef]

Moller, K. D.

K. D. Moller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt. 34, 1493–1501 (1995).
[CrossRef] [PubMed]

K. D. Moller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE 1992, 130–139 (1993).
[CrossRef]

Park, N.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
[CrossRef]

Phulpin, T.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Pierangelo, C.

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Popa, D.

J. Sin, W. H. Lee, and D. Popa, “Assembled Fourier transform micro-spectrometer,” Proc. SPIE 6109, 610904(2006).
[CrossRef]

Qiu, Y.-Q.

P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).

Renaud, P.

G. Lammel, S. Schweizer, and P. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators A, Phys. 92, 52–59 (2001).
[CrossRef]

Romero-Borja, F.

J. Linkemann, F. Romero-Borja, and H. O. Tittel, “FT spectrometer with fixed mirrors using Fizeau fringes,” Proc. SPIE 1575, 184–187 (1992).
[CrossRef]

Rosak, A.

A. Lacan, F.-M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18, 8311–8331(2010).
[CrossRef] [PubMed]

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

A. Rosak and F. Tintó, “Progress report of a static Fourier transform spectrometer breadboard,” in Proceedings of the 5th International Conference on Space Optics (ESA Publications Division, 2004), pp. 67–71.

Roucayrol, L.

A. Lacan, F.-M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18, 8311–8331(2010).
[CrossRef] [PubMed]

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

Salaün, Y.

Schweizer, S.

G. Lammel, S. Schweizer, and P. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators A, Phys. 92, 52–59 (2001).
[CrossRef]

Shen, Y.-H.

P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).

Shu, P.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Sin, J.

J. Sin, W. H. Lee, and D. Popa, “Assembled Fourier transform micro-spectrometer,” Proc. SPIE 6109, 610904(2006).
[CrossRef]

Solf, C.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005).
[CrossRef]

Solgaard, O.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
[CrossRef]

Tingting, L.

G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008).
[CrossRef]

Tintó, F.

A. Rosak and F. Tintó, “Progress report of a static Fourier transform spectrometer breadboard,” in Proceedings of the 5th International Conference on Space Optics (ESA Publications Division, 2004), pp. 67–71.

Tittel, H. O.

J. Linkemann, F. Romero-Borja, and H. O. Tittel, “FT spectrometer with fixed mirrors using Fizeau fringes,” Proc. SPIE 1575, 184–187 (1992).
[CrossRef]

Tremas, T.

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

Tremblay, P.

Villemaire, A.

Wallrabe, U.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005).
[CrossRef]

Wang, B.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
[CrossRef]

Wang, W.-B.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Wijngaards, D. D. L.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A, Phys. 92, 88–95 (2001).
[CrossRef]

Wolffenbuttel, R. F.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A, Phys. 92, 88–95 (2001).
[CrossRef]

Yang, D.-Z.

P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).

Ying, Z.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Yu, K.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
[CrossRef]

Zhang, J.

Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
[CrossRef]

Zhengping, H.

G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008).
[CrossRef]

Zhu, W.-B.

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Acta Opt. Sin. (1)

G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008).
[CrossRef]

Acta Phys. Sin. (1)

B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).

Appl. Opt. (2)

J. Opt. A Pure Appl. Opt. (1)

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A Pure Appl. Opt. 2, 519(2000).
[CrossRef]

Opt. Express (2)

Opt. Precision Eng. (1)

P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).

Proc. SPIE (5)

F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008).
[CrossRef]

J. Sin, W. H. Lee, and D. Popa, “Assembled Fourier transform micro-spectrometer,” Proc. SPIE 6109, 610904(2006).
[CrossRef]

Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009).
[CrossRef]

J. Linkemann, F. Romero-Borja, and H. O. Tittel, “FT spectrometer with fixed mirrors using Fizeau fringes,” Proc. SPIE 1575, 184–187 (1992).
[CrossRef]

K. D. Moller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE 1992, 130–139 (1993).
[CrossRef]

Sens. Actuators A, Phys. (4)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A, Phys. 92, 88–95 (2001).
[CrossRef]

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006).
[CrossRef]

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005).
[CrossRef]

G. Lammel, S. Schweizer, and P. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators A, Phys. 92, 52–59 (2001).
[CrossRef]

Other (2)

C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.

A. Rosak and F. Tintó, “Progress report of a static Fourier transform spectrometer breadboard,” in Proceedings of the 5th International Conference on Space Optics (ESA Publications Division, 2004), pp. 67–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simplified configuration of the micro static FTS. 1. Collimator. 2. Beam splitter (50% transmission, 50% reflection). 3. Higher step mirror. 4. Lower step mirror. 5. Two-dimensional detector. The coordinate system in the detector plane will be used in following discussion.

Fig. 2
Fig. 2

Diffraction distances of different facets. Coordinate system is the same one shown in Fig. 1. Distances along y correspond to higher facets, and those along x correspond to lower ones.

Fig. 3
Fig. 3

(a) 3 × 3 sections, (b) 5 × 5 sections.

Fig. 4
Fig. 4

(a) Amplitude curves with 0, 5, 10 μm and 640 μm shift around z 0 , (b) corresponding phase curves.

Fig. 5
Fig. 5

Interferogram of 32 × 32 steps for ideal blackbody radiation light source.

Fig. 6
Fig. 6

Spectrum reverted from 32 × 32 steps, 44 × 44 steps, and the ideal spectrum.

Fig. 7
Fig. 7

Theoretic and practical A / C values.

Fig. 8
Fig. 8

Diffraction-limited spectrum with facet widths 260, 1300, 3900 μm , and the ideal spectrum.

Fig. 9
Fig. 9

Interferograms of 32 × 32 steps for monochromatic light source.

Fig. 10
Fig. 10

Spectrum reverted from 32 × 32 steps.

Fig. 11
Fig. 11

Spectrum reverted from 36 × 36 steps.

Tables (1)

Tables Icon

Table 1 SNR of the System with Different Numbers of Added Steps

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

V = I S = A ( σ ) + A ( σ ) cos [ 4 π σ ( z 1 z 2 ) ] ,
U ( x , y , z ) = exp ( i k z ) i λ z exp ( i k x 2 + y 2 2 z ) + + U 0 ( x 1 , y 1 ) exp [ i k ( x 1 2 + y 1 2 ) 2 z ] exp [ i 2 π λ z ( x x 1 + y y ) 1 ] d x 1 d y 1 ,
U ( x , y , z ) = A ( x , y , z 0 ) exp [ i ϕ ( x , y , z 0 ) ] exp [ i k ( z z 0 ) ] ,
U ( x , y , z 1 , z 2 ) = [ U ( y , z 1 ) + exp ( i k n s ) U ( y d , z 1 + n s ) + exp ( i k n s ) U ( y + d , z 1 n s ) ] exp ( i k z 1 ) exp ( i k z 0 ) + [ U ( x , z 2 ) + exp ( i k s ) U ( x d , z 2 + s ) + exp ( i k s ) U ( x + d , z 2 s ) ] exp ( i k z 2 ) exp ( i k z 0 ) ,
U ( x , y , z 1 , z 2 ) = [ U ( y , z 0 ) + exp ( i 2 k n s ) U ( y d , z 0 ) + exp ( i 2 k n s ) U ( y + d , z 0 ) ] exp [ i 2 k ( z 1 z 0 ) ] + [ U ( x , z 0 ) + exp ( i 2 k s ) U ( x d , z 0 ) + exp ( i 2 k s ) U ( x + d , z 0 ) ] exp [ i 2 k ( z 2 z 0 ) ] = B 1 ( y , z 0 ) exp [ i ϕ 1 ( y , z 0 ) ] exp ( i 2 k z 1 ) + B 2 ( x , z 0 ) exp [ i ϕ 2 ( x , z 0 ) ] exp ( i 2 k z 2 ) ,
V ( z 1 , z 2 , z 0 ) = d / 2 d / 2 d / 2 d / 2 U ( x , y , z 1 , z 2 ) [ U ( x , y , z 1 , z 2 ) ] * d x d y .
V ( z 1 , z 2 , z 0 ) = B + C cos [ 2 k ( z 1 z 2 ) + θ ] ,
B = d / 2 d / 2 d / 2 d / 2 [ B 1 2 ( y , z 0 ) + B 2 2 ( x , z 0 ) ] d x d y ,
C exp ( i θ ) = 2 d / 2 d / 2 d / 2 d / 2 B 1 ( y , z 0 ) B 2 ( x , z 0 ) exp [ i ( ϕ 1 ϕ 2 ) ] d x d y .
B | C | ,
SNR = 0.1 0.4 S DL ( σ ) d σ 0.1 0.4 | S DL ( σ ) S ( σ ) | d σ ,

Metrics