Abstract

A scheme for two-dimensional (2D) subwavelength atom localization is proposed, in which the atom is in a four-level tripod configuration and driven by two orthogonal standing-wave lasers. Because of the spatial dependence of atom–field interaction, the spontaneously emitted photon carries information about the position of the atom in standing-wave fields. We exploit this fact to 2D atom localization conditioned on the measurement of spontaneously emitted photon at a particular frequency, and obtain a high precision and resolution in the position probability distribution. Moreover, an improvement by a factor of 2 in the detecting probability of an atom can be achieved by initially preparing the atom in the coherent population trapping state. Qualitatively, the high- precision, high-resolution atom localization can be attributed to the quantum interference effect between competitive multiple spontaneous decay channels.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription