Abstract

Using the correlated signal and idler photon pairs generated in a dispersion-shifted fiber by a pulsed pump, we measure the quantum efficiency of an InGaAs/InP avalanche photodiode-based single-photon detector. Since the collection efficiency of photon pairs is a key parameter to correctly deduce the quantum efficiency, we carefully characterize the collection efficiency by studying the correlation dependence of photon pairs on the spectra of pump, signal, and idler photons. This study allows us to obtain the quantum efficiency of the single-photon detector by using photon pairs with various kinds of bandwidth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett. 97, 043602 (2006).
    [CrossRef] [PubMed]
  3. D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
    [CrossRef]
  4. G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47, 2099–2104 (2000).
    [CrossRef]
  5. M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51, 1549–1557 (2004).
  6. A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley, “Absolute efficiency estimation of photon-number-resolving detectors using twin beams,” Opt. Express 17, 4397–4411 (2009).
    [CrossRef] [PubMed]
  7. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [CrossRef]
  8. Z. Y. Ou and L. Mandel, “Violation of bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
    [CrossRef] [PubMed]
  9. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  10. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
    [CrossRef]
  11. O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
    [CrossRef]
  12. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
    [CrossRef] [PubMed]
  13. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).
  14. A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
    [CrossRef]
  15. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  16. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
    [CrossRef] [PubMed]
  17. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
    [CrossRef]
  18. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single-photons at 1570 nm,” Opt. Express 17, 6156–6165 (2009).
    [CrossRef] [PubMed]
  19. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
    [CrossRef] [PubMed]
  20. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Pertroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1852 (1994).
    [CrossRef] [PubMed]
  21. S. V. Polyakov and A. L. Migdall, “high-accuracy verification of a correlated photon based method for determining photon-counting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
    [CrossRef] [PubMed]
  22. S. Odate, A. Yoshizawa, D. Fukuda, and H. Tsuchida, “Quantum efficiency measurements by bidirectional coincidence counting of correlated photon pairs,” Opt. Lett. 32, 3176–3178 (2007).
    [CrossRef] [PubMed]
  23. X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion-shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
    [CrossRef] [PubMed]
  24. X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.
  25. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [CrossRef] [PubMed]
  26. J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
    [CrossRef]
  27. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
    [CrossRef]
  28. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [CrossRef] [PubMed]
  29. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
    [CrossRef] [PubMed]
  30. P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).
  31. X. Ma, L. Yang, L. Cui, X. Guo, and X. Li are preparing a paper to be called “Optimization of the fiber based sources of near degenerate photon pairs: Influence of self-phase modulation.”
  32. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33, 593–595 (2008).
    [CrossRef] [PubMed]
  33. J. Oh, C. Antonelli, M. Tur, and M. Brodsky, “Method for characterizing single-photon detectors in saturation regime by cw laser,” Opt. Express 18, 5906–5911 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (4)

X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion-shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
[CrossRef] [PubMed]

X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33, 593–595 (2008).
[CrossRef] [PubMed]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

2007 (3)

2006 (4)

D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett. 97, 043602 (2006).
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[CrossRef]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.

2005 (4)

2004 (3)

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51, 1549–1557 (2004).

2003 (1)

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[CrossRef]

2002 (2)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

2000 (2)

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47, 2099–2104 (2000).
[CrossRef]

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1994 (1)

1988 (1)

Z. Y. Ou and L. Mandel, “Violation of bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[CrossRef] [PubMed]

1987 (1)

1980 (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
[CrossRef]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Achilles, D.

D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett. 97, 043602 (2006).
[CrossRef] [PubMed]

Alibart, O.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[CrossRef]

Altepeter, J. B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Antonelli, C.

Bouwmeester, D.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).

Brida, G.

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47, 2099–2104 (2000).
[CrossRef]

Brodsky, M.

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Chen, J.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

Chiao, R. Y.

Choi, S.

P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).

Coldenstrodt-Ronge, H. B.

Cui, L.

Dogariu, A.

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Dugan, S.

P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).

Duligall, J.

Eberhard, P. H.

Eisaman, M. D.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

Ekert, A.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).

Fan, J.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
[CrossRef] [PubMed]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Fukuda, D.

Fulconis, J.

Genovese, M.

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47, 2099–2104 (2000).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Gokden, B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Goldschmidt, E. A.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

Guo, X.

X. Ma, L. Yang, L. Cui, X. Guo, and X. Li are preparing a paper to be called “Optimization of the fiber based sources of near degenerate photon pairs: Influence of self-phase modulation.”

Hadfield, R. H.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Halder, M.

Jaeger, G. S.

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[CrossRef]

Klyshko, D. N.

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
[CrossRef]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Koprulu, K. G.

P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).

Kumar, P.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Pertroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1852 (1994).
[CrossRef] [PubMed]

Lee, K. F.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

Li, X.

X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion-shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
[CrossRef] [PubMed]

X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33, 593–595 (2008).
[CrossRef] [PubMed]

X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

X. Ma, L. Yang, L. Cui, X. Guo, and X. Li are preparing a paper to be called “Optimization of the fiber based sources of near degenerate photon pairs: Influence of self-phase modulation.”

Liang, C.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

Lundeen, J. S.

Ma, X.

X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion-shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
[CrossRef] [PubMed]

X. Ma, L. Yang, L. Cui, X. Guo, and X. Li are preparing a paper to be called “Optimization of the fiber based sources of near degenerate photon pairs: Influence of self-phase modulation.”

Mandel, L.

Z. Y. Ou and L. Mandel, “Violation of bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[CrossRef] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

McMillan, A. R.

Medic, M.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Migdall, A.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

Migdall, A. L.

S. V. Polyakov and A. L. Migdall, “high-accuracy verification of a correlated photon based method for determining photon-counting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
[CrossRef] [PubMed]

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51, 1549–1557 (2004).

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Mosley, P. J.

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Murdoch, S. G.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[CrossRef]

Nam, S. W.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Novero, C.

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47, 2099–2104 (2000).
[CrossRef]

Odate, S.

Oh, J.

Ou, Z. Y.

Pertroff, M. D.

Polyakov, S. V.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

S. V. Polyakov and A. L. Migdall, “high-accuracy verification of a correlated photon based method for determining photon-counting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
[CrossRef] [PubMed]

Puentes, G.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Rarity, J. G.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Ridley, K. D.

Russell, P. S. J.

Sergienko, A. V.

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Sharping, J.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Shih, Y. H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Silberhorn, C.

D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett. 97, 043602 (2006).
[CrossRef] [PubMed]

Smith, B. J.

Steinberg, A. M.

Tapster, P. R.

Thomas-Peter, N.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Tsuchida, H.

Tur, M.

Voss, P. L.

X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Wadsworth, W. J.

Walmsley, I. A.

Wang, L. J.

Ware, M.

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51, 1549–1557 (2004).

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Wong, G. K. L.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[CrossRef]

Worsley, A. P.

Xiong, C.

Yang, L.

Yoshizawa, A.

Yu, D.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zeilinger, A.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Contemp. Phys. (1)

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

J. Mod. Opt. (3)

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47, 2099–2104 (2000).
[CrossRef]

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51, 1549–1557 (2004).

P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).

New J. Phys. (1)

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[CrossRef]

Opt. Express (8)

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

S. V. Polyakov and A. L. Migdall, “high-accuracy verification of a correlated photon based method for determining photon-counting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
[CrossRef] [PubMed]

X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion-shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
[CrossRef] [PubMed]

A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley, “Absolute efficiency estimation of photon-number-resolving detectors using twin beams,” Opt. Express 17, 4397–4411 (2009).
[CrossRef] [PubMed]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single-photons at 1570 nm,” Opt. Express 17, 6156–6165 (2009).
[CrossRef] [PubMed]

J. Oh, C. Antonelli, M. Tur, and M. Brodsky, “Method for characterizing single-photon detectors in saturation regime by cw laser,” Opt. Express 18, 5906–5911 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (3)

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[CrossRef]

Phys. Rev. Lett. (5)

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett. 97, 043602 (2006).
[CrossRef] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Z. Y. Ou and L. Mandel, “Violation of bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
[CrossRef]

Other (3)

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).

X. Ma, L. Yang, L. Cui, X. Guo, and X. Li are preparing a paper to be called “Optimization of the fiber based sources of near degenerate photon pairs: Influence of self-phase modulation.”

X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Collection efficiency ξ s as a function of σ s / σ 0 . The solid and dashed curves are the calculated results for f ( Ω s ) described by sixth-order super-Gaussian and standard Gaussian functions, respectively.

Fig. 2
Fig. 2

A schematic of the experimental setup: EDFA, erbium-doped fiber amplifier; F 1 , filter; FPC, fiber polarization controller; PBS, polarization beam splitter; F 2 , dual-band filter.

Fig. 3
Fig. 3

(a) Single counts in idler band N T as a function of pump powers. The solid curve is the fit of the polynomial N T = η t i s 1 P ave + s 2 P ave 2 ; the contributions of linear scattering η t i s 1 P ave (dashed line) and quadratic scattering R i F = s 2 P ave 2 (dashed-dotted curve) are plotted separately as well. The inset shows the true coincidence C c as a function of η t s R i F . (b) True coincidences versus the central wavelength of signal photons λ s 0 for the average pump power of 0.18 mW. The solid curve is the fit of the Gaussian function S scan exp [ ( λ s 1550.72 ) 2 / 0.73 2 ] . The inset is the passband of the filter in signal band; solid curve overlapped with data points is the fitting of Gaussian function f ( λ s ) = exp [ ( λ s λ s 0 ) 2 / 0.36 2 ] .

Fig. 4
Fig. 4

Passband spectra of the signal, idler, and pump photons. Solid curves are fits to the data. (a) Passbands of filters in idler band fitted with Gaussian functions f ( λ ) = exp [ ( λ 1537.4 ) 2 / 0.09 2 ] and f ( λ ) = exp [ ( λ 1537.4 ) 2 / 0.46 2 ] , where FWHMs are 0.15 and 0.69 nm, respectively. (b) Passbands of filters in idler band fitted with Gaussian functions f ( λ ) = exp [ ( λ 1537.4 ) 2 / 0.27 2 ] and f ( λ ) = exp [ ( λ 1537.4 ) 2 / 0.66 2 ] , where FWHMs are 0.46 and 1.1 nm, respectively. (c) Passbands of filters in signal band fitted with super-Gaussian functions f ( λ ) = exp [ ( λ 1550.7 ) 6 / 0.36 6 ] and f ( λ ) = exp [ ( λ 1550.7 ) 6 / 0.6 6 ] , where FWHMs are 0.67 and 1.15 nm, respectively. (d) Spectra of pump pulses with an average power of about 0.3 mW. Triangles and diamonds representing the spectra of pump in the input and output of DSF are overlapped. The fitting function f ( λ ) = exp [ ( λ 1544 ) 2 / 0.18 2 ] is overlapped with the data points.

Fig. 5
Fig. 5

(a) True coincidence as a function of η t s R i F for signal and idler photons with different ratios σ s / σ 0 . Solid lines are fits to the function C c = ζ R i F η t s with ζ as the fitting parameter, whose values are 0.058, 0.086, 0.106, 0.115, and 0.123 for σ s / σ 0 equals 0.48, 0.85, 1.27, 1.68, and 2.32, respectively. The inset is the enlargement of some data points which are not clear in the main plot due to limited space. (b) The parameter ζ as a function of σ s / σ 0 . The solid curve is the theoretical fit ζ = ξ s η U T with η U T = 12.26 % as the fitting parameter.

Fig. 6
Fig. 6

The QE η U T obtained by using signal and idler photons with different ratios σ s / σ 0 .

Tables (4)

Tables Icon

Table 1 Coefficient s 1 in Idler Channel with Different Bandwidths

Tables Icon

Table 2 Experimental Parameters for the QE Measurement with Different F 2 ’s

Tables Icon

Table 3 Standard Deviations of Some Parameters

Tables Icon

Table 4 Standard Deviations of R i F and η U T

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

| Ψ ( ω s , ω i ) d ω s d ω i F ( ω s , ω i ) | ω s | ω i ,
N s = η d 1 η t s R FWM ,     N i = η d 2 η t i R FWM ,
c ¯ = η d 1 η t s N i = η d 2 η t i N s .
η d 1 = c ¯ N i η t s ,     η d 2 = c ¯ N s η t i .
R s F = A s η d 1 η t s ( γ P p L ) 2 σ s σ p ,     R i F = A i η d 1 η t s ( γ P p L ) 2 σ i σ p ,
C c = ξ i η d 2 η t i R s F = ξ s η d 1 η t s R i F ,
ξ s ( i ) = d Ω s ( i ) f ( Ω s ( i ) ) S s ( i ) d Ω s ( i ) S s ( i )
F ( ω s , ω i ) = L 0 d z exp { i Δ k z 2 i γ P p z } 1 i k σ p 2 z i 2 k ( Ω s + Ω i ) z σ p 2 exp { ( Ω s + Ω i ) 2 4 σ p 2 } ,
η d 2 = C c ξ i R s F η t i ,     η d 1 = C c ξ s R i F η t s .
h ( ω s ω s 0 ) exp ( ( ω s ω s 0 ) 2 σ s 2 ) ,
S scan exp ( ( ω s 0 ω s 0 ) 2 ( σ 0 ) 2 ) ,
S s exp ( Ω s 2 ( σ 0 ) 2 ) ,
S s exp ( Ω s 2 2 σ p 2 + σ i 2 ) .
ξ s = d Ω s f ( Ω s ) exp ( Ω s 2 2 σ p 2 + σ i 2 ) d Ω s   exp ( Ω s 2 2 σ p 2 + σ i 2 ) .
N T = s 1 P ave + s 2 P ave 2 ,
η U T = η d 1 = C c ξ s R i F η t s .
N T / η t i = R R i / η t i = ( s 1 / η t i ) P ave = s 1 P ave ,
δ η U T = η U T ( δ C c C c ) 2 + ( δ ξ s ξ s ) 2 + ( δ R i F R i F ) 2 + ( δ η t s η t s ) 2 ,
δ R i F = ( δ N T ) 2 + ( η t i s 1 P ave ) 2 { ( δ η t i η t i ) 2 + ( δ s 1 s 1 ) 2 + ( δ P ave P ave ) 2 } ,
δ s 1 = s 1 ( δ R R i R R i ) 2 + ( δ η t i η t i ) 2 + ( δ P ave P ave ) 2 .
η U T / η s 0 = 1 + n ¯ ( 1 + n ¯ η t s η s 0 ) [ 1 + n ¯ ( η t s η s 0 + η t i η i 0 η t s η s 0 η t i η i 0 ) ] ,

Metrics