Abstract

An asymmetric one-dimensional periodic waveguide is proposed for slowing light down. The waveguide consists of a straight dielectric strip and a single-side Bragg grating and thus is simple and easy for fabricating and has ultraflat dispersion relations in large wave-vector range supporting simultaneous ultralow-group-velocity- and zero-group-velocity-dispersion modes. It is numerically demonstrated that the modes can be localized in the waveguide.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  2. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
    [CrossRef] [PubMed]
  3. E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
    [CrossRef]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [CrossRef] [PubMed]
  5. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [CrossRef] [PubMed]
  6. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004).
    [CrossRef] [PubMed]
  7. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  8. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
    [CrossRef]
  9. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
    [CrossRef] [PubMed]
  10. J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
    [CrossRef]
  11. A. Cheng, M. P. Fok, and C. Shu, “Wavelength-transparent, stimulated-Brillouin-scattering slow light using cross-gain-modulation-based wavelength converter and Brillouin fiber laser,” Opt. Lett. 33, 2596–2598 (2008).
    [CrossRef] [PubMed]
  12. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
    [CrossRef] [PubMed]
  13. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator a proposal and analysis optical waveguide,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  14. K. L. Tsakmakidis, A. D. Boadman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
    [CrossRef] [PubMed]
  15. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
    [CrossRef] [PubMed]
  16. S. A. Rinne, F. G. Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
    [CrossRef]
  17. S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32, 3333–3335 (2007).
    [CrossRef] [PubMed]
  18. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006).
    [CrossRef] [PubMed]
  19. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
    [CrossRef] [PubMed]
  20. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef] [PubMed]
  21. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
    [CrossRef]
  22. J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
    [CrossRef]
  23. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  24. M. Povinelli, “Slow light: Variable speed limit,” Nat. Phys. 2, 735–736 (2006).
    [CrossRef]
  25. M. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
    [CrossRef] [PubMed]
  26. D. A. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
    [CrossRef]
  27. A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
    [CrossRef]
  28. M. Soljacic, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos,Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
    [CrossRef]
  29. J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
    [CrossRef]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).
  31. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  32. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
    [CrossRef] [PubMed]

2008 (6)

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

A. Cheng, M. P. Fok, and C. Shu, “Wavelength-transparent, stimulated-Brillouin-scattering slow light using cross-gain-modulation-based wavelength converter and Brillouin fiber laser,” Opt. Lett. 33, 2596–2598 (2008).
[CrossRef] [PubMed]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef] [PubMed]

S. A. Rinne, F. G. Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[CrossRef]

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).

2007 (5)

D. A. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32, 3333–3335 (2007).
[CrossRef] [PubMed]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

K. L. Tsakmakidis, A. D. Boadman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
[CrossRef]

2006 (5)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006).
[CrossRef] [PubMed]

J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

M. Povinelli, “Slow light: Variable speed limit,” Nat. Phys. 2, 735–736 (2006).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

2005 (7)

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

M. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

2004 (1)

M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004).
[CrossRef] [PubMed]

2003 (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

2002 (1)

2001 (2)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

1999 (1)

Baba, T.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef] [PubMed]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Ballato, A.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

Ballato, J.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

Bandaru, P. R.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Barsi, C.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Bermel, P.

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Boadman, A. D.

K. L. Tsakmakidis, A. D. Boadman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Braun, P. V.

S. A. Rinne, F. G. Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[CrossRef]

Burr, G.

Chang-Chuang, C. J.

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Cheng, A.

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Crankshaw, S.

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Eggleton, B. J.

J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Engelen, R. J. P.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fan, S.

Fanjoux, G.

J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
[CrossRef]

Farjadpour, A.

Figotin, A.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

Fink, Y.

M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004).
[CrossRef] [PubMed]

Fok, M. P.

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Furfaro, L.

J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
[CrossRef]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boadman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Ibanescu, M.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004).
[CrossRef] [PubMed]

M. Soljacic, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos,Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Ippen, E.

Joannopoulos, J. D.

Johnson, S.

Johnson, S. G.

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kim, E.

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kostinski, N.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Kuipers, L.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef] [PubMed]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

Lee, R. K.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Littler, I. C. M.

J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Luo, C.

M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004).
[CrossRef] [PubMed]

Maillotte, H.

J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).

Michaud, J.

J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
[CrossRef]

Miller, D. A.

D. A. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

Moewe, M.

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Mok, J. T.

J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Mookherjea, S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Mori, D.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef] [PubMed]

Noda, S.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Palinginis, P.

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Park, J. S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Povinelli, M.

Povinelli, M. L.

Rinne, S. A.

S. A. Rinne, F. G. Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[CrossRef]

Rodriguez, A.

Roundy, D.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004).
[CrossRef] [PubMed]

Sandhu, S.

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

Santamaria, F. G.

S. A. Rinne, F. G. Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[CrossRef]

Scherer, A.

Schweinsberg, A.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Sedgwick, F.

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Shu, C.

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

M. Soljacic, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos,Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
[CrossRef]

Sterke, C. M.

J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Sylvestre, T.

J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
[CrossRef]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boadman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Vitebskiy, I.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Wang, H.

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).

Xu, Y.

Yang, S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Yanik, M. F.

Yariv, A.

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Ann. Phys. (Paris) (1)

J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (3)

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

S. A. Rinne, F. G. Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[CrossRef]

Nat. Phys. (2)

J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

M. Povinelli, “Slow light: Variable speed limit,” Nat. Phys. 2, 735–736 (2006).
[CrossRef]

Nature (5)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

K. L. Tsakmakidis, A. D. Boadman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. E (2)

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

Phys. Rev. Lett. (6)

D. A. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef] [PubMed]

M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Science (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed asymmetric grating waveguide structure.

Fig. 2
Fig. 2

Fourth and 12th photonic bands and electric field pattern of the TM modes of the proposed asymmetric grating waveguide. (A) Dispersion relation; (B) electric field pattern ( E z ) of fourth band; (C) electric field pattern ( E z ) of 12th band.

Fig. 3
Fig. 3

Group velocity and d 2 ω / d k 2 of the proposed asymmetric grating waveguide.

Fig. 4
Fig. 4

(a) Schematic structure and fluxes of the photonic pulse with the frequency width 0.01 ( c / a ) and normalized frequencies (a) 0.095 ( c / a ) and (b) 0.16 ( c / a ) in proposed waveguide.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D = 2 π c λ 2 β 2 ,
β 2 = d 2 k d ω 2 = d 2 ω / d k 2 ( d ω / d k ) 3 .
D = 2 π c λ 2 β 2 = 2 π c λ 2 d 2 ω / d k 2 v g 3 .

Metrics