Abstract

Photopolymers are playing an ever more important role in diverse areas of research such as holographic data storage, hybrid photonic circuits, and solitary waves. In each of these applications, the production of primary radicals is the driving force of the polymerization processes. Therefore an understanding of the production, removal, and scavenging processes of free radicals in a photopolymer system is crucial in determining a material’s response to a given exposure. One such scavenging process is inhibition. In this paper the non-local photo-polymerization driven diffusion model is extended to more accurately model the effects of (i) time varying primary radical production, (ii) the rate of removal of photosensitizer, and (iii) inhibition. The model is presented to specifically analyze the effects of inhibition, which occur most predominantly at the start of grating growth, and comparisons between theory and experiment are performed which quantify these effects.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451–1460 (1959).
    [CrossRef]
  2. C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. 33, 173–190 (1996).
    [CrossRef]
  3. M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
    [CrossRef]
  4. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
    [CrossRef]
  5. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
    [CrossRef]
  6. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
    [CrossRef]
  7. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
    [CrossRef]
  8. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
    [CrossRef]
  9. M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
    [CrossRef]
  10. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
    [CrossRef]
  11. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
    [CrossRef]
  12. S. Schultz, E. Glytsis, and T. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000).
    [CrossRef]
  13. A. Sato, M. Scepanovic, and R. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003).
    [CrossRef] [PubMed]
  14. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197–3207 (2005).
    [CrossRef] [PubMed]
  15. F. Bruder and T. Faecke, “Materials in optical data storage,” Int. J. Mater. Res. 101, 199–215 (2010).
    [CrossRef]
  16. InPhase Technologies, Tapestry Media, www.inphase-technologies.com.
  17. M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
    [CrossRef]
  18. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
    [CrossRef] [PubMed]
  19. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  20. S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996).
    [CrossRef] [PubMed]
  21. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  22. D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
    [CrossRef]
  23. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [CrossRef]
  24. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
    [CrossRef]
  25. J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  26. C. Neipp, S. Gallego, M. Ortuno, A. Marquez, M. L. Alvarez, A. Belendez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol—acrylamide-based photopolymer,” J. Opt. Soc. Am. B 20, 2052–2060 (2003).
    [CrossRef]
  27. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
    [CrossRef] [PubMed]
  28. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7, 232–242 (2007).
    [PubMed]
  29. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11, 024008 (2009).
    [CrossRef]
  30. T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
    [CrossRef]
  31. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  32. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
    [CrossRef]
  33. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
    [CrossRef]
  34. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
    [CrossRef]
  35. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
    [CrossRef]
  36. S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
    [CrossRef] [PubMed]
  37. G. Odian, Principles of Polymerization (Wiley, 1991).
  38. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
    [CrossRef]
  39. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
    [CrossRef]
  40. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol solvent,” J. Opt. A, Pure Appl. Opt. 3, 20–25 (2001).
    [CrossRef]
  41. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford Univ. Press, 1976).
  42. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

2010 (2)

F. Bruder and T. Faecke, “Materials in optical data storage,” Int. J. Mater. Res. 101, 199–215 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

2009 (5)

2008 (2)

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

2007 (2)

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7, 232–242 (2007).
[PubMed]

2006 (2)

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef] [PubMed]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

2005 (3)

2004 (1)

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

2003 (3)

2001 (2)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol solvent,” J. Opt. A, Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

2000 (3)

1999 (3)

1998 (2)

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

1997 (3)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

1996 (2)

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. 33, 173–190 (1996).
[CrossRef]

S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996).
[CrossRef] [PubMed]

1994 (1)

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

1993 (1)

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

1991 (1)

G. Odian, Principles of Polymerization (Wiley, 1991).

1976 (1)

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford Univ. Press, 1976).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

1959 (1)

C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451–1460 (1959).
[CrossRef]

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Alvarez, M. L.

Amatguerri, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Aubrecht, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Bamford, C. H.

C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451–1460 (1959).
[CrossRef]

Belendez, A.

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

Bowman, C. N.

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

Boyd, J.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[CrossRef]

Bruder, F.

F. Bruder and T. Faecke, “Materials in optical data storage,” Int. J. Mater. Res. 101, 199–215 (2010).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

Close, C. E.

Colvin, V.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[CrossRef]

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Crank, J.

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford Univ. Press, 1976).

Daiber, A. J.

Decker, C.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. 33, 173–190 (1996).
[CrossRef]

Decker, D.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. 33, 173–190 (1996).
[CrossRef]

Dhar, L.

Elzaouk, B.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. 33, 173–190 (1996).
[CrossRef]

Faecke, T.

F. Bruder and T. Faecke, “Materials in optical data storage,” Int. J. Mater. Res. 101, 199–215 (2010).
[CrossRef]

Fazlic, A.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Gallego, S.

Gaylord, T.

Gleeson, M. R.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11, 024008 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7, 232–242 (2007).
[PubMed]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

Glytsis, E.

Goodner, M. D.

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

Gu, M.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Guo, J.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

Hale, A.

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Hesselink, L.

Hwang, H. C.

Jenkins, A. D.

C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451–1460 (1959).
[CrossRef]

Jenkins, B. K.

Johnston, R.

C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451–1460 (1959).
[CrossRef]

Jost, P.

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Kasala, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef] [PubMed]

Katz, H. E.

Kelly, J. V.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Kostuk, R.

Koudela, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Kwon, J. H.

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lavielle, L.

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol solvent,” J. Opt. A, Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Lee, H. R.

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

Liu, S.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

Lopez, N.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Lougnot, D. J.

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

Mallavia, R.

Marquez, A.

Mateos, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

Miler, M.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Mouroulis, P.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Neipp, C.

Nguyen, L. H.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

O’Neill, F. T.

Odian, G.

G. Odian, Principles of Polymerization (Wiley, 1991).

Ortuno, M.

Pascual, I.

Piazzolla, S.

Pineda, J.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Rewari, A.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef] [PubMed]

Robertson, T. L.

Sabol, D.

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

Saravanamuttu, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef] [PubMed]

Sastre, R.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Sato, A.

Scepanovic, M.

Schilling, F. C.

Schilling, M. L.

L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Schnoes, M. G.

Schultz, S.

Sheridan, J. T.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11, 024008 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7, 232–242 (2007).
[PubMed]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol solvent,” J. Opt. A, Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Slagle, T.

Sochava, S. L.

Straub, M.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Trentler, T.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[CrossRef]

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Woo, K. C.

Zhang, J.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef] [PubMed]

Zhao, G. H.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (2)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Chem. Mater. (1)

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[CrossRef]

Ind. Eng. Chem. Res. (1)

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

Int. J. Mater. Res. (1)

F. Bruder and T. Faecke, “Materials in optical data storage,” Int. J. Mater. Res. 101, 199–215 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

J. Macromol. Sci., Pure Appl. Chem. (1)

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. 33, 173–190 (1996).
[CrossRef]

J. Mod. Opt. (3)

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7, 232–242 (2007).
[PubMed]

J. Opt. A, Pure Appl. Opt. (2)

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11, 024008 (2009).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol solvent,” J. Opt. A, Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (7)

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, M. L. Alvarez, A. Belendez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol—acrylamide-based photopolymer,” J. Opt. Soc. Am. B 20, 2052–2060 (2003).
[CrossRef]

J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

Macromolecules (1)

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Optik (Stuttgart) (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

Pure Appl. Opt. (1)

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Trans. Faraday Soc. (1)

C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451–1460 (1959).
[CrossRef]

Other (3)

InPhase Technologies, Tapestry Media, www.inphase-technologies.com.

G. Odian, Principles of Polymerization (Wiley, 1991).

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford Univ. Press, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation of the spatial variation of (a) the ground state photosensitizer concentration and (b) the generation of primary radicals, for an exposure intensity of I 0 = 1   mW / cm 2 , at Λ = 700   nm , for various exposure times: t exp = 10   s (solid line), t exp = 30   s (dashed line), t exp = 250   s (longer dashed line).

Fig. 2
Fig. 2

Simulations of the variation of the first two concentration harmonics of monomer and polymer using the theoretical model.

Fig. 3
Fig. 3

Simulations of the refractive index modulation with time, for various values of dissolved oxygen concentration. Z 0 = 1 × 10 7   mol / cm 3 (long-dashed line), Z 0 = 5 × 10 8   mol / cm 3 (short-dashed line), and Z 0 = 1 × 10 8   mol / cm 3 (solid line).

Fig. 4
Fig. 4

Simulation of the behavior of the oxygen concentration with varying values of τ z , for an exposure time of t exp = 30   s and exposure intensity of I 0 = 0.04   mW / cm 2 . τ z = 0.125 s 1 (shorter-dashed line), τ z = 0.1 s 1 (short-dashed line), τ z = 0.05 s 1 (long-dashed line), τ z = 0.025 s 1 (longer-dashed line).

Fig. 5
Fig. 5

Experimentally obtained refractive index modulation growth curves recorded in uncoverplated AA/PVA photopolymer material layers at a spatial frequency of 1428 lines/mm for three different exposing intensities: I 01 = 0.2   mW / cm 2 (short-dashed line), I 02 = 0.1   mW / cm 2 (dashed line), and I 03 = 0.05   mW / cm 2 (long-dashed line) with corresponding fits achieved with the theoretical model.

Fig. 6
Fig. 6

Experimentally obtained refractive index modulation growth curves recorded in both coverplated (short-dashed line) and uncoverplated (long-dashed line) AA/PVA photopolymer material layers at a spatial frequency of 1428 lines/mm for a recording intensity of I 0 = 0.05   mW / cm 2 with corresponding fits achieved with the theoretical model.

Tables (2)

Tables Icon

Table 1 Parameters Extracted from Fits to Experimentally Obtained Growth Curves of Refractive Index Modulation in Uncoverplated Photopolymer Layers

Tables Icon

Table 2 Parameters Extracted from Fits to Experimentally Obtained Growth Curves Recorded at I 0 = 0.05   mW / cm 2 for Coverplated and Uncoverplated Polymer Layers

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

R i = 2 Φ I a ( t ) ,
I h ν R ,
R + M k i M 1 = chain   initiator .
M n + M k p M n + 1 = growing   polymer   chain .
M n + M m k t c M n + m = dead   polymer ,
M n + M m k t d M n + M m = dead   polymer ,
M n + R k t p M n R = dead   polymer .
D + Z k z , Dye leuco   dye + Z ,
R + Z k z , R ( R + Z   and / or   R Z ) = scavenged   radical ,
M n + Z k z , M ( M n + Z   and / or   M n Z ) = dead   polymer .
D + h υ k a D ,
D + Z k z , D leuco   dye ,
D k r D ,
D + C I k d R + H + + D R + H D ,
C I + H D k b H 2 D + C I int .
d D ( x , t ) d t = k a D ( x , t ) + k r D ( x , t ) ,
d D ( x , t ) d t = k a D ( x , t ) k r D ( x , t ) k d D ( x , t ) C I ( x , t ) k z , D D ( x , t ) Z ( x , t ) ,
d C I ( x , t ) d t = k d D ( x , t ) C I ( x , t ) k b H D ( x , t ) C I ( x , t ) ,
d H D ( x , t ) d t = k d D ( x , t ) C I ( x , t ) k b H D ( x , t ) C I ( x , t ) .
d Z ( x , t ) d t = d d x [ D z d Z ( x , t ) d x ] k z , D D ( x , t ) Z ( x , t ) k z , R Z ( x , t ) R ( x , t ) k z , M Z ( x , t ) M ( x , t ) ,
k z = k z , 0   exp ( E z / R T ) ,
d R ( x , t ) d t = k d D ( x , t ) C I ( x , t ) k i R ( x , t ) u ( x , t ) k t p R ( x , t ) M ( x , t ) k z R ( x , t ) Z ( x , t ) ,
d M ( x , t ) d t = k i R ( x , t ) u ( x , t ) k t [ M ( x , t ) ] 2 k t p R ( x , t ) M ( x , t ) k z Z ( x , t ) M ( x , t ) ,
d u ( x , t ) d t = d d x [ D m ( x , t ) d u ( x , t ) d x ] k i R ( x , t ) u ( x , t ) k p M ( x , t ) u ( x , t ) G ( x , x ) d x ,
G ( x , x ) = 1 2 π σ exp [ ( x x ) 2 2 σ ] ,
d N ( x , t ) d t = k p M ( x , t ) u ( x , t ) G ( x , x ) d x d d x [ D N ( x , t ) d N ( x , t ) d x ] ,
Z 0 ( t = 0 ) = Z 0 ,     D 0 ( t = 0 ) = D 0 ,     C I 0 ( t = 0 ) = C I 0 ,
u 0 ( t = 0 ) = U 0 ,
D n 0 ( t = 0 ) = H D n 0 ( t = 0 ) = R n 0 ( t = 0 ) = M n 0 ( t = 0 ) = N n 0 ( t = 0 ) = 0 ,
D n > 0 ( t = 0 ) = C I n > 0 ( t = 0 ) = Z n > 0 ( t = 0 ) = 0.
η ( t ) = sin 2 [ π d n 1 ( t ) λ p   cos   θ in ] ,
n 1 ( t ) = ( n dark 2 + 2 ) 2 6 n dark [ ϕ 1 ( m ) ( t ) ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) + ϕ 1 ( p ) ( t ) ( n p 2 1 n p 2 + 2 n b 2 1 n b 2 + 2 ) ] .
d Z ( x , t ) d t = d d x [ D z d Z ( x , t ) d x ] k z , D D ( x , t ) Z ( x , t ) k z , R Z ( x , t ) R ( x , t ) k z , M Z ( x , t ) M ( x , t ) + τ z [ Z 0 Z ( x , t ) ] ,

Metrics