Abstract

We discuss the creation of quantum discord between two two-level atoms trapped in an optical cavity in a noisy environment. It is shown that nonzero steady-state quantum discord between atoms can be obtained when the white-noise field is separately imposed on atoms or cavity mode, while the steady-state quantum discord reaches zero if both cavity mode and atoms are driven simultaneously by white-noise fields. In particular, we demonstrate that white-noise field in different cases can play a variously constructive role in the generation of quantum discord.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  4. H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
    [CrossRef] [PubMed]
  5. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
    [CrossRef]
  6. V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
    [CrossRef] [PubMed]
  7. S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
    [CrossRef]
  8. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
    [CrossRef]
  9. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
    [CrossRef]
  10. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
    [CrossRef] [PubMed]
  11. A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
    [CrossRef]
  12. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
    [CrossRef] [PubMed]
  13. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
    [CrossRef] [PubMed]
  14. L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
    [CrossRef]
  15. L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009).
    [CrossRef]
  16. H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551 (1993).
    [CrossRef] [PubMed]
  17. S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002).
    [CrossRef]
  18. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
    [CrossRef] [PubMed]
  19. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
    [CrossRef] [PubMed]
  20. M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission,” Phys. Rev. A 55, 67–71 (1997).
    [CrossRef]
  21. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
    [CrossRef]
  22. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
    [CrossRef] [PubMed]
  23. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
    [CrossRef] [PubMed]
  24. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
    [CrossRef]
  25. T. Werlang and G. Rigolin, “Thermal and magnetic quantum discord in Heisenberg models,” Phys. Rev. A 81, 044101 (2010).
    [CrossRef]
  26. A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
    [CrossRef]
  27. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
    [CrossRef]
  28. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
    [CrossRef] [PubMed]
  29. L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian depolarizing channels,” arXiv:1006.1805.
  30. M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
    [CrossRef] [PubMed]
  31. X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003).
    [CrossRef]
  32. J. B. Xu and S. B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72 (2005).
    [CrossRef]
  33. P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
    [CrossRef] [PubMed]
  34. S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004).
    [CrossRef]
  35. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [CrossRef] [PubMed]
  36. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
    [CrossRef]
  37. J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
    [CrossRef]
  38. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
    [CrossRef] [PubMed]
  39. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
    [CrossRef] [PubMed]
  40. M. Forster, S. Winkler, and S. Wolf, “Distilling nonlocality,” Phys. Rev. Lett. 102, 120401 (2009).
    [CrossRef] [PubMed]

2010 (7)

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

T. Werlang and G. Rigolin, “Thermal and magnetic quantum discord in Heisenberg models,” Phys. Rev. A 81, 044101 (2010).
[CrossRef]

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[CrossRef] [PubMed]

J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

2009 (5)

M. Forster, S. Winkler, and S. Wolf, “Distilling nonlocality,” Phys. Rev. Lett. 102, 120401 (2009).
[CrossRef] [PubMed]

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009).
[CrossRef]

2008 (3)

S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
[CrossRef]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

2006 (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

J. B. Xu and S. B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72 (2005).
[CrossRef]

2004 (1)

S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004).
[CrossRef]

2003 (2)

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003).
[CrossRef]

V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
[CrossRef] [PubMed]

2002 (3)

H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef] [PubMed]

S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

2001 (1)

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

2000 (4)

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef] [PubMed]

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[CrossRef] [PubMed]

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

1999 (1)

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

1998 (2)

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
[CrossRef]

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

1997 (1)

M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission,” Phys. Rev. A 55, 67–71 (1997).
[CrossRef]

1996 (1)

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
[CrossRef] [PubMed]

1995 (1)

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

1993 (2)

H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Acín, A.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[CrossRef]

Alber, G.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Ali, M.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Aolita, L.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[CrossRef]

Barbieri, M.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Beige, A.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Bonifacio, R.

S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002).
[CrossRef]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Braun, D.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[CrossRef] [PubMed]

Braunstein, S. L.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Calderbank, A. R.

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
[CrossRef] [PubMed]

Cavalcanti, D.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[CrossRef]

Caves, C. M.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Chen, Z. Q.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Chuang, I. L.

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Cucchietti, F. M.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[CrossRef]

Datta, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Doherty, A. C.

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Eberly, J. H.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Fanchini, F. F.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Feng, M.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Ferraro, A.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[CrossRef]

Fischer, T.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Flammia, S. T.

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

Forster, M.

M. Forster, S. Winkler, and S. Wolf, “Distilling nonlocality,” Phys. Rev. Lett. 102, 120401 (2009).
[CrossRef] [PubMed]

Garraway, B. M.

L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009).
[CrossRef]

Giorda, P.

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[CrossRef] [PubMed]

Hamieh, S.

S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004).
[CrossRef]

Henderson, L.

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

Hood, C. J.

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Huelga, S. F.

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

Ilchenko, V. S.

Jin, J. -s.

J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Jozsa, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
[CrossRef]

Knight, P. L.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[CrossRef] [PubMed]

M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission,” Phys. Rev. A 55, 67–71 (1997).
[CrossRef]

Kobes, R.

S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004).
[CrossRef]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Li, S. B.

J. B. Xu and S. B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72 (2005).
[CrossRef]

Lidar, D. A.

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

Linden, N.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Luo, S.

S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
[CrossRef]

Lynn, T. W.

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Mabuchi, H.

Mancini, S.

S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002).
[CrossRef]

Maniscalco, S.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian depolarizing channels,” arXiv:1006.1805.

Maunz, P.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Mazzola, L.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian depolarizing channels,” arXiv:1006.1805.

Meyer, D. A.

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef] [PubMed]

Milburn, G. J.

H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551 (1993).
[CrossRef] [PubMed]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef] [PubMed]

Paris, M. G. A.

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[CrossRef] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Pei, P.

J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Piilo, J.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian depolarizing channels,” arXiv:1006.1805.

Pinkse, P. W. H.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Plenio, M. B.

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission,” Phys. Rev. A 55, 67–71 (1997).
[CrossRef]

Popescu, S.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Rau, A. R. P.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Rempe, G.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Rigolin, G.

T. Werlang and G. Rigolin, “Thermal and magnetic quantum discord in Heisenberg models,” Phys. Rev. A 81, 044101 (2010).
[CrossRef]

Schack, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Shaji, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

Shor, P. W.

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
[CrossRef] [PubMed]

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

Song, H. S.

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003).
[CrossRef]

Song, H. -s.

J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Souza, S.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Streed, E. W.

Suominen, K. -A.

L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

Tombesi, P.

S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002).
[CrossRef]

Tregenna, B.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[CrossRef] [PubMed]

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Vedral, V.

V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
[CrossRef] [PubMed]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission,” Phys. Rev. A 55, 67–71 (1997).
[CrossRef]

Vernooy, D. W.

Villas Boas, C. J.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Vitali, D.

S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002).
[CrossRef]

Wang, B.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Werlang, T.

T. Werlang and G. Rigolin, “Thermal and magnetic quantum discord in Heisenberg models,” Phys. Rev. A 81, 044101 (2010).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Whaley, K. B.

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Winkler, S.

M. Forster, S. Winkler, and S. Wolf, “Distilling nonlocality,” Phys. Rev. Lett. 102, 120401 (2009).
[CrossRef] [PubMed]

Wiseman, H. M.

H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551 (1993).
[CrossRef] [PubMed]

Wolf, S.

M. Forster, S. Winkler, and S. Wolf, “Distilling nonlocality,” Phys. Rev. Lett. 102, 120401 (2009).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Xu, J. B.

J. B. Xu and S. B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72 (2005).
[CrossRef]

Xu, Z. Y.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Yi, X. X.

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003).
[CrossRef]

Yu, C. S.

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003).
[CrossRef]

Yu, C. -s.

J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Yu, T.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

Zaraket, H.

S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004).
[CrossRef]

Zhou, L.

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003).
[CrossRef]

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef] [PubMed]

Europhys. Lett. (1)

S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002).
[CrossRef]

J. Phys. A (1)

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

Nature (2)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

New J. Phys. (1)

J. B. Xu and S. B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (14)

J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003).
[CrossRef]

S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

T. Werlang and G. Rigolin, “Thermal and magnetic quantum discord in Heisenberg models,” Phys. Rev. A 81, 044101 (2010).
[CrossRef]

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
[CrossRef] [PubMed]

M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission,” Phys. Rev. A 55, 67–71 (1997).
[CrossRef]

S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
[CrossRef]

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Phys. Rev. Lett. (16)

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef] [PubMed]

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[CrossRef] [PubMed]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
[CrossRef] [PubMed]

H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551 (1993).
[CrossRef] [PubMed]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[CrossRef] [PubMed]

M. Forster, S. Winkler, and S. Wolf, “Distilling nonlocality,” Phys. Rev. Lett. 102, 120401 (2009).
[CrossRef] [PubMed]

Quantum Inf. Process. (1)

L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009).
[CrossRef]

Science (2)

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

Other (1)

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian depolarizing channels,” arXiv:1006.1805.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the system composed of an optical cavity and two two-level atoms. The cavity leaky rate is 2 κ and the cavity mode is driven by the white-noise field with intensity m T . The atom has a ground state | g and an excited state | e with atom spontaneous emission rate 2 γ (see the inset), and the atoms are driven by the white-noise field with intensity n T .

Fig. 2
Fig. 2

Quantum discord of the two atoms between atoms as a function of noise intensity n T and time t (in units of 1 / g ) in the case of m T = 0 . The parameters are chosen as γ = 0.1 g and κ = 1.5 g .

Fig. 3
Fig. 3

(a) The steady-state quantum discord and (b) the steady-state entanglement between atoms as functions of noise intensity n T and cavity leaky rate κ (in units of g) in the case of m T = 0 and γ = 0.1 g . (c) The steady-state quantum discord and (d) the steady-state entanglement between atoms as functions of n T and atom spontaneous emission rate γ (in units of g) in the case of m T = 0 and κ = 2 g .

Fig. 4
Fig. 4

Quantum discord between atoms between atoms as a function of noise intensity m T and time t (in units of 1 / g ) in the case of n T = 0 . The parameters are chosen as κ = 0.1 g and γ = 0.2 g .

Fig. 5
Fig. 5

(a) The steady-state quantum discord and (b) the steady-state entanglement versus noise intensity m T and cavity leaky rate κ (in units of g) in the case of n T = 0 and γ = 0.1 g . (c) The steady-state quantum discord and (d) the steady-state entanglement versus m T and atom spontaneous emission rate γ (in units of g) in the case of n T = 0 and κ = 0.1 g .

Fig. 6
Fig. 6

Quantum discord between atoms between atoms as a function of noise intensity n T ( = m T ) and time t (in units of 1 / g ). The parameter are chosen as κ = g and γ = 0.1 g .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H = ω c a a + i = 1 , 2 ω a σ i + σ i + g ( a σ i + H .c . ) ,
H I = i = 1 , 2 g ( a σ i + H .c . ) ,
ρ ̇ = i [ H , ρ ] + L ( ρ ) ,
L ( ρ ) = ( n T + 1 ) γ i = 1 , 2 ( 2 σ i ρ σ i + σ i + σ i ρ ρ σ i + σ i ) + n T γ i = 1 , 2 ( 2 σ i + ρ σ i σ i σ i + ρ ρ σ i σ i + ) + ( m T + 1 ) κ ( 2 a ρ a a a ρ ρ a a ) + m T κ ( 2 a ρ a a a ρ ρ a a ) .
Q ( ρ ) = I ( ρ ) C ( ρ ) ,

Metrics