Abstract

The cross-Kerr nonlinearity arising between two far-infrared (FIR) pulses is investigated in a three-coupled-quantum-well (TCQW) structure based on intersubband transitions. The results show that the giant Kerr nonlinearity with a relatively large cross-phase-modulation phase shift can be used for realizing polarization quantum phase gate in this TCQW structure. Such a semiconductor system is much more practical than its atomic counterpart because of its flexible design and the wide tunable parameters. This protocol may have potential applications in FIR all-optical switch design and quantum information processing with solid-state materials.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Zubairy, A. B. Matsko, and M. O. Scully, “Resonant enhancement of high-order optical nonlinearities based on atomic coherence,” Phys. Rev. A 65, 043804 (2002).
    [CrossRef]
  2. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
    [CrossRef] [PubMed]
  3. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
    [CrossRef]
  4. C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006).
    [CrossRef]
  5. P. Li, Y. Gu, L. Wang, and Q. Gong, “Fifth-order nonlinearity and 3-qubit phase gate in a five-level tripod atomic system,” J. Opt. Soc. Am. B 25, 504–512 (2008).
    [CrossRef]
  6. A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
    [CrossRef]
  7. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  8. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [CrossRef] [PubMed]
  9. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
    [CrossRef]
  10. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
    [CrossRef] [PubMed]
  11. D. Petrosyan and Yu. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
    [CrossRef]
  12. D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
    [CrossRef]
  13. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
    [CrossRef] [PubMed]
  14. L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002).
    [CrossRef]
  15. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003).
    [CrossRef] [PubMed]
  16. A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003).
    [CrossRef]
  17. A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
    [CrossRef]
  18. A. A. Batista and D. S. Citrin, “Rabi flopping in a two-level system with a time-dependent energy renormalization: intersubband transitions in quantum wells,” Phys. Rev. Lett. 92, 127404 (2004).
    [CrossRef] [PubMed]
  19. E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Rabi oscillations in a strongly driven semiconductor quantum well,” J. Appl. Phys. 100, 044312 (2006).
    [CrossRef]
  20. A. A. Batista and D. S. Citrin, “Quantum control with linear chirp in two-subband n-type doped quantum wells,” Phys. Rev. B 74, 195318 (2006).
    [CrossRef]
  21. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).
  22. R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
    [CrossRef] [PubMed]
  23. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
    [CrossRef]
  24. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
    [CrossRef]
  25. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
    [CrossRef] [PubMed]
  26. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
    [CrossRef]
  27. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
    [CrossRef] [PubMed]
  28. W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
    [CrossRef]
  29. J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
    [CrossRef]
  30. J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006).
    [CrossRef]
  31. W. X. Yang and R. K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
    [CrossRef] [PubMed]
  32. X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
    [CrossRef]
  33. G. Bastard, “Superlattice band structure in the envelope-function approximation,” Phys. Rev. B 24, 5693–5697 (1981).
    [CrossRef]
  34. D. F. Nelson, R. C. Miller, and D. A. Kleinmann, “Band nonparabolicity effects in semiconductor quantum wells,” Phys. Rev. B 35, 7770–7773 (1987); nonparabolicities were taken into account using this method.
    [CrossRef]
  35. C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2.
    [CrossRef] [PubMed]
  36. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
    [CrossRef]
  37. C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992).
    [CrossRef]
  38. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [CrossRef]
  39. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [CrossRef] [PubMed]
  40. H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131, 333–338 (1996).
    [CrossRef]
  41. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
    [CrossRef] [PubMed]
  42. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
    [CrossRef]
  43. Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
    [CrossRef]

2009

W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[CrossRef]

J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

2008

W. X. Yang and R. K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
[CrossRef] [PubMed]

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

P. Li, Y. Gu, L. Wang, and Q. Gong, “Fifth-order nonlinearity and 3-qubit phase gate in a five-level tripod atomic system,” J. Opt. Soc. Am. B 25, 504–512 (2008).
[CrossRef]

Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
[CrossRef]

2007

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef] [PubMed]

2006

J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Rabi oscillations in a strongly driven semiconductor quantum well,” J. Appl. Phys. 100, 044312 (2006).
[CrossRef]

A. A. Batista and D. S. Citrin, “Quantum control with linear chirp in two-subband n-type doped quantum wells,” Phys. Rev. B 74, 195318 (2006).
[CrossRef]

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
[CrossRef]

C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006).
[CrossRef]

2005

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

2004

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

A. A. Batista and D. S. Citrin, “Rabi flopping in a two-level system with a time-dependent energy renormalization: intersubband transitions in quantum wells,” Phys. Rev. Lett. 92, 127404 (2004).
[CrossRef] [PubMed]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

D. Petrosyan and Yu. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

2003

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003).
[CrossRef] [PubMed]

A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

2002

M. S. Zubairy, A. B. Matsko, and M. O. Scully, “Resonant enhancement of high-order optical nonlinearities based on atomic coherence,” Phys. Rev. A 65, 043804 (2002).
[CrossRef]

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

2000

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

1999

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

1997

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

1996

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef] [PubMed]

H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131, 333–338 (1996).
[CrossRef]

1994

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[CrossRef]

1992

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992).
[CrossRef]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2.
[CrossRef] [PubMed]

1987

D. F. Nelson, R. C. Miller, and D. A. Kleinmann, “Band nonparabolicity effects in semiconductor quantum wells,” Phys. Rev. B 35, 7770–7773 (1987); nonparabolicities were taken into account using this method.
[CrossRef]

1981

G. Bastard, “Superlattice band structure in the envelope-function approximation,” Phys. Rev. B 24, 5693–5697 (1981).
[CrossRef]

Artoni, M.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Atanasov, R.

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef] [PubMed]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002).
[CrossRef]

Bastard, G.

G. Bastard, “Superlattice band structure in the envelope-function approximation,” Phys. Rev. B 24, 5693–5697 (1981).
[CrossRef]

Batista, A. A.

A. A. Batista and D. S. Citrin, “Quantum control with linear chirp in two-subband n-type doped quantum wells,” Phys. Rev. B 74, 195318 (2006).
[CrossRef]

A. A. Batista and D. S. Citrin, “Rabi flopping in a two-level system with a time-dependent energy renormalization: intersubband transitions in quantum wells,” Phys. Rev. Lett. 92, 127404 (2004).
[CrossRef] [PubMed]

Beck, M.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[CrossRef]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2.
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992).
[CrossRef]

Cataliotti, F.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Cho, A. Y.

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2.
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

Citrin, D. S.

A. A. Batista and D. S. Citrin, “Quantum control with linear chirp in two-subband n-type doped quantum wells,” Phys. Rev. B 74, 195318 (2006).
[CrossRef]

A. A. Batista and D. S. Citrin, “Rabi flopping in a two-level system with a time-dependent energy renormalization: intersubband transitions in quantum wells,” Phys. Rev. Lett. 92, 127404 (2004).
[CrossRef] [PubMed]

Corbalán, R.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Czajkowski, G.

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002).
[CrossRef]

Davoudi, B.

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002).
[CrossRef]

Deng, L.

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

Ding, C.

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Dynes, J. F.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Faist, J.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[CrossRef]

Frogley, M. D.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

Gong, Q.

Gong, S.

Gossard, A. C.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

Gu, Y.

Haché, A.

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef] [PubMed]

Hang, C.

C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006).
[CrossRef]

Hao, X.

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Hawrylak, P.

A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003).
[CrossRef]

Hou, J. M.

W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[CrossRef]

Huang, G.

C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006).
[CrossRef]

Huang, P.

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Hughes, J. L. P.

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef] [PubMed]

Imamoglu, A.

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131, 333–338 (1996).
[CrossRef]

Ivanov, M. Yu.

A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003).
[CrossRef]

Jin, S.

Joshi, A.

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

Kang, H.

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

Kleinmann, D. A.

D. F. Nelson, R. C. Miller, and D. A. Kleinmann, “Band nonparabolicity effects in semiconductor quantum wells,” Phys. Rev. B 35, 7770–7773 (1987); nonparabolicities were taken into account using this method.
[CrossRef]

Korkusinski, M.

A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003).
[CrossRef]

Kurizki, G.

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

La Rocca, G. C.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

Lee, R. K.

W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[CrossRef]

W. X. Yang and R. K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
[CrossRef] [PubMed]

Li, J.

J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Li, P.

Li, R.

Li, Y.

C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006).
[CrossRef]

Lin, Y. Y.

W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[CrossRef]

Liu, J.

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Lü, X.

J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Ma, L.

C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006).
[CrossRef]

Malakyan, Yu. P.

D. Petrosyan and Yu. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Matsko, A. B.

M. S. Zubairy, A. B. Matsko, and M. O. Scully, “Resonant enhancement of high-order optical nonlinearities based on atomic coherence,” Phys. Rev. A 65, 043804 (2002).
[CrossRef]

Miller, R. C.

D. F. Nelson, R. C. Miller, and D. A. Kleinmann, “Band nonparabolicity effects in semiconductor quantum wells,” Phys. Rev. B 35, 7770–7773 (1987); nonparabolicities were taken into account using this method.
[CrossRef]

Nelson, D. F.

D. F. Nelson, R. C. Miller, and D. A. Kleinmann, “Band nonparabolicity effects in semiconductor quantum wells,” Phys. Rev. B 35, 7770–7773 (1987); nonparabolicities were taken into account using this method.
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

Nikonov, D. E.

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

Niu, Y.

Olaya-Castro, A.

A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003).
[CrossRef]

Ottaviani, C.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Paspalakis, E.

J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Rabi oscillations in a strongly driven semiconductor quantum well,” J. Appl. Phys. 100, 044312 (2006).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Petrosyan, D.

D. Petrosyan and Yu. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

Pfeiffer, L. N.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Phillips, C. C.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Phillips, M.

Rebic, S.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Scandolo, S.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[CrossRef]

Schmidt, H.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131, 333–338 (1996).
[CrossRef]

Scully, M. O.

M. S. Zubairy, A. B. Matsko, and M. O. Scully, “Resonant enhancement of high-order optical nonlinearities based on atomic coherence,” Phys. Rev. A 65, 043804 (2002).
[CrossRef]

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).

Serapiglia, G. B.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Si, L.

J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002).
[CrossRef]

Sipe, J. E.

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef] [PubMed]

Sirtori, C.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[CrossRef]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2.
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992).
[CrossRef]

Sivco, D. L.

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992).
[CrossRef]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2.
[CrossRef] [PubMed]

Sun, H.

Terzis, A. F.

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Rabi oscillations in a strongly driven semiconductor quantum well,” J. Appl. Phys. 100, 044312 (2006).
[CrossRef]

Tombesi, P.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Tsaousidou, M.

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Rabi oscillations in a strongly driven semiconductor quantum well,” J. Appl. Phys. 100, 044312 (2006).
[CrossRef]

van Driel, H. M.

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef] [PubMed]

Vitali, D.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Vodopyanov, K. L.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Wang, H.

Wang, L.

West, K. W.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

Xiao, M.

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

Yang, W. X.

W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[CrossRef]

W. X. Yang and R. K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
[CrossRef] [PubMed]

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Yang, X.

J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Yu, R.

J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Zhu, Y.

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

Zubairy, M. S.

M. S. Zubairy, A. B. Matsko, and M. O. Scully, “Resonant enhancement of high-order optical nonlinearities based on atomic coherence,” Phys. Rev. A 65, 043804 (2002).
[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).

Appl. Phys. B

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

Appl. Phys. Lett.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Eur. Phys. J. B

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002).
[CrossRef]

J. Appl. Phys.

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Rabi oscillations in a strongly driven semiconductor quantum well,” J. Appl. Phys. 100, 044312 (2006).
[CrossRef]

Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Nature

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Nature Mater.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006).
[CrossRef]

Opt. Commun.

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131, 333–338 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008).
[CrossRef]

Phys. Rev. A

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[CrossRef]

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

M. S. Zubairy, A. B. Matsko, and M. O. Scully, “Resonant enhancement of high-order optical nonlinearities based on atomic coherence,” Phys. Rev. A 65, 043804 (2002).
[CrossRef]

D. Petrosyan and Yu. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Phys. Rev. B

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

A. A. Batista and D. S. Citrin, “Quantum control with linear chirp in two-subband n-type doped quantum wells,” Phys. Rev. B 74, 195318 (2006).
[CrossRef]

A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003).
[CrossRef]

J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006).
[CrossRef]

G. Bastard, “Superlattice band structure in the envelope-function approximation,” Phys. Rev. B 24, 5693–5697 (1981).
[CrossRef]

D. F. Nelson, R. C. Miller, and D. A. Kleinmann, “Band nonparabolicity effects in semiconductor quantum wells,” Phys. Rev. B 35, 7770–7773 (1987); nonparabolicities were taken into account using this method.
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[CrossRef]

Phys. Rev. Lett.

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2.
[CrossRef] [PubMed]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005).
[CrossRef] [PubMed]

A. A. Batista and D. S. Citrin, “Rabi flopping in a two-level system with a time-dependent energy renormalization: intersubband transitions in quantum wells,” Phys. Rev. Lett. 92, 127404 (2004).
[CrossRef] [PubMed]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef] [PubMed]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

Other

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic energy-band diagram of a single period of the asymmetric AlInAs/GaInAs TCQW structure. The layer thicknesses in the TCQW regions are, respectively, from left to right, 42 Å (GaInAs well), 16 Å (AlInAs barrier), 20 Å (GaInAs well), 16 Å (AlInAs barrier), and 18 Å (GaInAs well). The positions of the calculated energy subbands and the corresponding modulus squared of the electronic wave functions are also displayed. (b) Schematic of the energy level arrangement under study. The sample with four ISB levels interacts with one cw pump laser (carrier frequency ω c and Rabi frequency 2 Ω c ) and two weak FIR pulsed fields (carrier frequencies ω p , ω s and Rabi frequencies 2 Ω p , 2 Ω s ). The σ + and σ polarized probe and signal can acquire a large cross-Kerr phase modulation. (c) Possible arrangement of experimental apparatus.

Fig. 2
Fig. 2

(a) The linear susceptibility χ p ( 1 ) and (b) third-order self-Kerr susceptibility χ p ( 3 , s ) versus the FIR probe wavelength λ p . We have set N | μ 12 | 2 / ( 2 ε 0 ) and N | μ 12 | 4 / ( 8 3 ε 0 ) as units in plotting, respectively. Other parameters are Γ 2 = 2 γ 2 = 3.2   meV , Γ 3 = 2 γ 3 = 1.3   meV , Γ 4 = 2 γ 4 = 1.0   meV , Δ c = 0 , and | Ω c | = 15   meV .

Fig. 3
Fig. 3

The third-order cross-Kerr susceptibilities: (a) χ p ( 3 , c ) of the FIR probe and (b) χ s ( 3 , c ) of the FIR signal as functions of the FIR signal wavelength λ s . We have set N | μ 12 | 2 | μ 34 | 2 / ( 8 3 ε 0 ) as units in plotting. Other parameters are Γ 2 = 2 γ 2 = 3.2   meV , Γ 3 = 2 γ 3 = 1.3   meV , Γ 4 = 2 γ 4 = 1.0   meV , Δ p = Δ c = 0 , and | Ω c | = 15   meV .

Fig. 4
Fig. 4

Dimensionless group velocities V g / V of the probe and the signal fields versus the FIR signal wavelength λ s for V = 10 6   m / s . Other parameters are Δ p = Δ c = 0 , Γ 4 = 2 γ 4 = 1.0   meV , | Ω c | = 15   meV , | Ω p | = 2.4   meV , and | Ω s | = 1   meV . Dashed and solid lines denote the probe and the signal fields, respectively.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

H S = j = 2 4 ω j 1 | j j | ( Ω p e i ω p t | 2 1 | + Ω c e i ω c t | 3 2 | + Ω s e i ω s t | 4 3 | + h .c . ) .
H 0 = ω p | 2 2 | + ( ω p + ω c ) | 3 3 | + ( ω p + ω c + ω s ) | 4 4 | ,
H int I = Δ p | 2 2 | + ( Δ p + Δ c ) | 3 3 | + ( Δ p + Δ c + Δ s ) | 4 4 | ( Ω p | 2 1 | + Ω c | 3 2 | + Ω s | 4 3 | + h .c . ) ,
A ̇ 1 = i Ω p A 2 ,
A ̇ 2 = i ( Δ p + i γ 2 ) A 2 + i Ω p A 1 + i Ω c A 3 ,
A ̇ 3 = i [ ( Δ p + Δ c ) + i γ 3 ] A 3 + i Ω c A 2 + i Ω s A 4 ,
A ̇ 4 = i [ ( Δ p + Δ c + Δ s ) + i γ 4 ] A 4 + i Ω s A 3 ,
χ p = N μ 12 ε 0 E p A 2 A 1 = N | μ 12 | 2 2 ε 0 Ω p A 2 A 1 ,
χ s = N μ 34 ε 0 E s A 4 A 3 = N | μ 34 | 2 2 ε 0 Ω s A 4 A 3 .
χ p ( z , t ) χ p ( 1 ) + χ p ( 3 , s ) | E p | 2 + χ p ( 3 , c ) | E s | 2 ,
χ s ( z , t ) χ s ( 3 , c ) | E p | 2 .
χ p ( 1 ) = N | μ 12 | 2 2 ε 0 α 2 α 1 α 2 | Ω c | 2 ,
χ p ( 3 , s ) = N | μ 12 | 4 8 3 ε 0 α 2 ( | α 2 | 2 + | Ω c | 2 ) ( α 1 α 2 | Ω c | 2 ) | α 1 α 2 | Ω c | 2 | 2 ,
χ p ( 3 , c ) = N | μ 12 | 2 | μ 34 | 2 8 3 ε 0 1 α 3 ( α 1 α 2 | Ω c | 2 ) ,
χ s ( 3 , c ) = N | μ 34 | 2 | μ 12 | 2 8 3 ε 0 | Ω c | 2 α 3 | α 1 α 2 | Ω c | 2 | 2 ,
χ p ( 3 , c ) = χ s ( 3 , c ) N | μ 34 | 2 | μ 12 | 2 8 3 ε 0 | Ω c | 2 1 α 3 .
n g = 1 2 Re ( χ ) + ω 2   Re ( χ ) ω .
V g p 4 ε 0 c | Ω c | 2 N | μ 12 | 2 ω p ( 1 + β | Ω s | 2 ) ,
V g s 4 ε 0 c | Ω c | 2 N | μ 34 | 2 ω s β | Ω p | 2 ,
ϕ p ( 3 , c ) = k p l π 3 / 2 2 | Ω s | 2 4 | μ 34 | 2 erf ( ξ p s ) ξ p s Re ( χ p ( 3 , c ) ) ,
ϕ s ( 3 , c ) = k s l π 3 / 2 2 | Ω p | 2 4 | μ 12 | 2 erf ( ξ s p ) ξ s p Re ( χ s ( 3 , c ) ) ,
| σ p | σ s e i ( ϕ p ( 0 ) + ϕ s ( 0 ) ) | σ p | σ s ,
| σ p | σ + s e i ( ϕ p ( 0 ) + ϕ s ( 0 ) ) | σ p | σ + s ,
| σ + p | σ + s e i ( ϕ p Ξ + ϕ s ( 0 ) ) | σ + p | σ + s ,
| σ + p | σ s e i ( ϕ p + + ϕ s ) | σ + p | σ s ,
ϕ = ϕ p + + ϕ s ϕ p Ξ ϕ s ( 0 ) .

Metrics