Abstract

Trivalent thulium-doped LiGd(MoO4)2 single crystals have been grown by the Czochralski method. Room-temperature polarized absorption and fluorescence spectra of the crystals were analyzed. The fluorescence decay curves of the G14, H34, and F34 multiplets were measured, and the decay mechanisms of the G14 and H34 multiplets were discussed. Spectroscopic parameters related to the laser operation around 1.90μm via the F34H36 transition have been evaluated. Finally, end-pumped by a Ti:sapphire laser at 795 nm, the room-temperature quasi-continuous wave 1.9μm laser emission was demonstrated with a slope efficiency of 28%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
    [CrossRef]
  2. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
    [CrossRef]
  3. L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Tm+3 in CaWO4,” Proc. IRE 50, 86–87 (1962).
    [CrossRef]
  4. L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in ytterbium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
    [CrossRef]
  5. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
    [CrossRef]
  6. M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94, 195–198 (2009).
    [CrossRef]
  7. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett. 32, 2040–2042 (2007).
    [CrossRef] [PubMed]
  8. F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004).
    [CrossRef] [PubMed]
  9. C. Li, J. Song, D. Y. Shen, N. S. Kim, K.-i. Ueda, Y. J. Huo, S. F. He, and Y. H. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4, 12–18 (1999).
    [CrossRef] [PubMed]
  10. H. Kalaycioglu and A. Sennaroglu, “Low-threshold continuous-wave Tm3+:YAlO3 laser,” Opt. Commun. 281, 4071–4074 (2008).
    [CrossRef]
  11. J. J. Zayhowski, J. Harrison, C. Dill III, and J. Ochoa, “Tm:YVO4 microchip laser,” Appl. Opt. 34, 435–437 (1995).
    [CrossRef] [PubMed]
  12. Y. Urata and S. Wada, “808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature,” Appl. Opt. 44, 3087–3092 (2005).
    [CrossRef] [PubMed]
  13. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
    [CrossRef]
  14. X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
    [CrossRef]
  15. W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
    [CrossRef]
  16. V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
    [CrossRef]
  17. M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
    [CrossRef]
  18. V. Sudesh and K. Asai, “Spectroscopic and diode-pumped-laser properties of Tm, Ho:YLF; Tm, Ho:LuLF; and Tm, Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20, 1829–1837 (2003).
    [CrossRef]
  19. P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
    [CrossRef]
  20. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
    [CrossRef]
  21. O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
    [CrossRef]
  22. A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
    [CrossRef]
  23. V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
    [CrossRef]
  24. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  25. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  26. J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
    [CrossRef]
  27. H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
    [CrossRef]
  28. F. B. Xiong, Z. D. Luo, and Y. D. Huang, “Spectroscopic pic properties of Tm3+ in anisotropic PbWO4 crystal,” Appl. Phys. B 80, 321–328 (2005).
    [CrossRef]
  29. J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
    [CrossRef]
  30. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [CrossRef]
  31. W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev. 139, A2008–A2016 (1965).
    [CrossRef]
  32. Z. D. Luo, X. Y. Chen, and T. J. Zhao, “Judd–Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements,” Opt. Commun. 134, 415–422 (1997).
    [CrossRef]
  33. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
    [CrossRef]
  34. Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
    [CrossRef]
  35. W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
    [CrossRef]
  36. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
    [CrossRef]
  37. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  38. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  39. G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cimento 28, 1–53 (2005).
  40. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
    [CrossRef]
  41. W. E. Blumberg, “Nuclear spin-lattice relaxation caused by paramagnetic impurities,” Phys. Rev. 119, 79–84 (1960).
    [CrossRef]
  42. D. L. Huber, “Fluorescence in the presence of traps,” Phys. Rev. B 20, 2307–2314 (1979).
    [CrossRef]
  43. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
    [CrossRef]
  44. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
    [CrossRef]
  45. I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
    [CrossRef]
  46. A. I. Burshteĭn, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).
  47. H. C. Chow and R. C. Powell, “Models for energy transfer in solids,” Phys. Rev. B 21, 3785–3792 (1980).
    [CrossRef]
  48. C. M. Lawson, E. E. Freed, and R. C. Powell, “Models for energy transfer in solids,” J. Chem. Phys. 76, 4171–4177 (1982).
    [CrossRef]
  49. B. M. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B.Di Bartolo and O.Forte, eds. (Springer, 2006), pp. 403–433.
    [CrossRef]
  50. X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
    [CrossRef]

2009 (3)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[CrossRef]

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94, 195–198 (2009).
[CrossRef]

2008 (5)

H. Kalaycioglu and A. Sennaroglu, “Low-threshold continuous-wave Tm3+:YAlO3 laser,” Opt. Commun. 281, 4071–4074 (2008).
[CrossRef]

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

2007 (5)

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett. 32, 2040–2042 (2007).
[CrossRef] [PubMed]

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[CrossRef]

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

2006 (6)

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
[CrossRef]

B. M. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B.Di Bartolo and O.Forte, eds. (Springer, 2006), pp. 403–433.
[CrossRef]

2005 (3)

Y. Urata and S. Wada, “808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature,” Appl. Opt. 44, 3087–3092 (2005).
[CrossRef] [PubMed]

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cimento 28, 1–53 (2005).

F. B. Xiong, Z. D. Luo, and Y. D. Huang, “Spectroscopic pic properties of Tm3+ in anisotropic PbWO4 crystal,” Appl. Phys. B 80, 321–328 (2005).
[CrossRef]

2004 (3)

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004).
[CrossRef] [PubMed]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

2003 (1)

1999 (3)

C. Li, J. Song, D. Y. Shen, N. S. Kim, K.-i. Ueda, Y. J. Huo, S. F. He, and Y. H. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4, 12–18 (1999).
[CrossRef] [PubMed]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

1997 (1)

Z. D. Luo, X. Y. Chen, and T. J. Zhao, “Judd–Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements,” Opt. Commun. 134, 415–422 (1997).
[CrossRef]

1995 (1)

1993 (1)

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1986 (1)

1982 (1)

C. M. Lawson, E. E. Freed, and R. C. Powell, “Models for energy transfer in solids,” J. Chem. Phys. 76, 4171–4177 (1982).
[CrossRef]

1980 (1)

H. C. Chow and R. C. Powell, “Models for energy transfer in solids,” Phys. Rev. B 21, 3785–3792 (1980).
[CrossRef]

1979 (1)

D. L. Huber, “Fluorescence in the presence of traps,” Phys. Rev. B 20, 2307–2314 (1979).
[CrossRef]

1972 (2)

A. I. Burshteĭn, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
[CrossRef]

1971 (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

1967 (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

1965 (3)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev. 139, A2008–A2016 (1965).
[CrossRef]

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in ytterbium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[CrossRef]

1962 (3)

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Tm+3 in CaWO4,” Proc. IRE 50, 86–87 (1962).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

1960 (1)

W. E. Blumberg, “Nuclear spin-lattice relaxation caused by paramagnetic impurities,” Phys. Rev. 119, 79–84 (1960).
[CrossRef]

Aguilo, M.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Aguiló, M.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Asai, K.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Basiev, T. T.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Bernardini, C.

Blumberg, W. E.

W. E. Blumberg, “Nuclear spin-lattice relaxation caused by paramagnetic impurities,” Phys. Rev. 119, 79–84 (1960).
[CrossRef]

Bollig, C.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94, 195–198 (2009).
[CrossRef]

Boyd, G. D.

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Tm+3 in CaWO4,” Proc. IRE 50, 86–87 (1962).
[CrossRef]

Burshtein, A. I.

A. I. Burshteĭn, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

Cano-Torres, J. M.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

Cao, Y. H.

Cascales, C.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Chen, X. Y.

Z. D. Luo, X. Y. Chen, and T. J. Zhao, “Judd–Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements,” Opt. Commun. 134, 415–422 (1997).
[CrossRef]

Chen, Y. J.

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
[CrossRef]

Chow, H. C.

H. C. Chow and R. C. Powell, “Models for energy transfer in solids,” Phys. Rev. B 21, 3785–3792 (1980).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

Deng, P. Z.

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Diaz, F.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Díaz, F.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Dill, C.

Esteban-Betegón, F.

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

Ferrari, M.

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cimento 28, 1–53 (2005).

Freed, E. E.

C. M. Lawson, E. E. Freed, and R. C. Powell, “Models for energy transfer in solids,” J. Chem. Phys. 76, 4171–4177 (1982).
[CrossRef]

Galán, M.

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Galzerano, G.

Gavalda, J.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Geusic, J. E.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in ytterbium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[CrossRef]

Gong, X. H.

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
[CrossRef]

Griebner, U.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Gruber, J. B.

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev. 139, A2008–A2016 (1965).
[CrossRef]

Güell, F.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Guo, W. J.

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

Han, X.

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
[CrossRef]

Han, X. M.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

Harrison, J.

He, S. F.

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Huang, J. H.

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

Huang, Y. D.

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
[CrossRef]

F. B. Xiong, Z. D. Luo, and Y. D. Huang, “Spectroscopic pic properties of Tm3+ in anisotropic PbWO4 crystal,” Appl. Phys. B 80, 321–328 (2005).
[CrossRef]

Huber, D. L.

D. L. Huber, “Fluorescence in the presence of traps,” Phys. Rev. B 20, 2307–2314 (1979).
[CrossRef]

Huo, Y. J.

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Ivleva, L. I.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Jang, B. X.

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

Jaque, D.

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

Johnson, L. F.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in ytterbium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Tm+3 in CaWO4,” Proc. IRE 50, 86–87 (1962).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kalaycioglu, H.

H. Kalaycioglu and A. Sennaroglu, “Low-threshold continuous-wave Tm3+:YAlO3 laser,” Opt. Commun. 281, 4071–4074 (2008).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
[CrossRef]

Khromov, M. N.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Kim, N. S.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev. 139, A2008–A2016 (1965).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Laporta, P.

Lavín, V.

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

Lawson, C. M.

C. M. Lawson, E. E. Freed, and R. C. Powell, “Models for energy transfer in solids,” J. Chem. Phys. 76, 4171–4177 (1982).
[CrossRef]

Li, C.

Liao, J. S.

Lin, Y. F.

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
[CrossRef]

Lis, D. A.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Liu, J.

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

Liu, J. H.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Luo, Z. D.

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
[CrossRef]

F. B. Xiong, Z. D. Luo, and Y. D. Huang, “Spectroscopic pic properties of Tm3+ in anisotropic PbWO4 crystal,” Appl. Phys. B 80, 321–328 (2005).
[CrossRef]

Z. D. Luo, X. Y. Chen, and T. J. Zhao, “Judd–Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements,” Opt. Commun. 134, 415–422 (1997).
[CrossRef]

Ma, E.

Martín, I. R.

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

Massons, J.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Mateos, X.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

Mayer, A. A.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[CrossRef]

Montoya, E.

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

Moulton, P. F.

Nassau, K.

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Tm+3 in CaWO4,” Proc. IRE 50, 86–87 (1962).
[CrossRef]

Ngcobo, S.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94, 195–198 (2009).
[CrossRef]

Nikonova, N. S.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
[CrossRef]

Obara, M.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

Ochoa, J.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohta, K.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

Ortega, P.

Osiko, V. V.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Parisi, D.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Petrov, V.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
[CrossRef]

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Popov, A. V.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Powell, R. C.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

C. M. Lawson, E. E. Freed, and R. C. Powell, “Models for energy transfer in solids,” J. Chem. Phys. 76, 4171–4177 (1982).
[CrossRef]

H. C. Chow and R. C. Powell, “Models for energy transfer in solids,” Phys. Rev. B 21, 3785–3792 (1980).
[CrossRef]

Provotorov, M. V.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
[CrossRef]

Pujol, M. C.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Rico, M.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

Righini, G. C.

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cimento 28, 1–53 (2005).

Rivier, S.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

Rodríguez, V. D.

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

Rodríguez-Mendoza, U. R.

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

Saito, H.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

Sarkisov, S. E.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
[CrossRef]

Schellhorn, M.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94, 195–198 (2009).
[CrossRef]

Sennaroglu, A.

H. Kalaycioglu and A. Sennaroglu, “Low-threshold continuous-wave Tm3+:YAlO3 laser,” Opt. Commun. 281, 4071–4074 (2008).
[CrossRef]

Serrano, M. D.

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

Shen, D. Y.

Silvestre, O.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

Smirnov, V. A.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Sobol, A. A.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Sole, R. M.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

Song, J.

Song, P. X.

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

Subbotin, K. A.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Sudesh, V.

Tan, Q. G.

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

Tan, Q. Q.

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[CrossRef]

F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004).
[CrossRef] [PubMed]

Tonelli, M.

Ueda, K. -i.

Urata, Y.

Valle, F. J.

Van Uitert, L. G.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in ytterbium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Viera, G.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

Volkov, V.

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

Voron’ko, Y. K.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Voronov, V. V.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Wada, S.

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

B. M. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B.Di Bartolo and O.Forte, eds. (Springer, 2006), pp. 403–433.
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

Xiong, F. B.

F. B. Xiong, Z. D. Luo, and Y. D. Huang, “Spectroscopic pic properties of Tm3+ in anisotropic PbWO4 crystal,” Appl. Phys. B 80, 321–328 (2005).
[CrossRef]

Xu, J.

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

Xu, X. D.

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Zaldo, C.

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006).
[CrossRef]

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[CrossRef]

Zayhowski, J. J.

Zhao, T. J.

Z. D. Luo, X. Y. Chen, and T. J. Zhao, “Judd–Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements,” Opt. Commun. 134, 415–422 (1997).
[CrossRef]

Zhao, Z. W.

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

Zharikov, E. V.

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Zhu, H. M.

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

Zverev, P. G.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94, 195–198 (2009).
[CrossRef]

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

F. B. Xiong, Z. D. Luo, and Y. D. Huang, “Spectroscopic pic properties of Tm3+ in anisotropic PbWO4 crystal,” Appl. Phys. B 80, 321–328 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in ytterbium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

C. R. Phys. (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

J. Appl. Phys. (5)

W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008).
[CrossRef]

X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

J. Chem. Phys. (4)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999).
[CrossRef]

C. M. Lawson, E. E. Freed, and R. C. Powell, “Models for energy transfer in solids,” J. Chem. Phys. 76, 4171–4177 (1982).
[CrossRef]

J. Cryst. Growth (1)

P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004).
[CrossRef]

J. Non-Cryst. Solids (1)

V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Phys. D: Appl. Phys. (1)

W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

Mater. Lett. (1)

J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007).
[CrossRef]

Opt. Commun. (2)

H. Kalaycioglu and A. Sennaroglu, “Low-threshold continuous-wave Tm3+:YAlO3 laser,” Opt. Commun. 281, 4071–4074 (2008).
[CrossRef]

Z. D. Luo, X. Y. Chen, and T. J. Zhao, “Judd–Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements,” Opt. Commun. 134, 415–422 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Opt. Spectrosc. (1)

Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008).
[CrossRef]

Phys. Rev. (4)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[CrossRef]

W. E. Blumberg, “Nuclear spin-lattice relaxation caused by paramagnetic impurities,” Phys. Rev. 119, 79–84 (1960).
[CrossRef]

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev. 139, A2008–A2016 (1965).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. B (3)

D. L. Huber, “Fluorescence in the presence of traps,” Phys. Rev. B 20, 2307–2314 (1979).
[CrossRef]

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

H. C. Chow and R. C. Powell, “Models for energy transfer in solids,” Phys. Rev. B 21, 3785–3792 (1980).
[CrossRef]

Phys. Status Solidi A (1)

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972).
[CrossRef]

Proc. IRE (1)

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Tm+3 in CaWO4,” Proc. IRE 50, 86–87 (1962).
[CrossRef]

Prog. Quantum Electron. (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33, 61–109 (2009).
[CrossRef]

Riv. Nuovo Cimento (1)

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cimento 28, 1–53 (2005).

Sov. Phys. JETP (1)

A. I. Burshteĭn, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

Other (1)

B. M. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B.Di Bartolo and O.Forte, eds. (Springer, 2006), pp. 403–433.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Room-temperature polarized absorption spectra of the 5.4 at. % Tm 3 + : LGM . The inset shows the expanded view of the bands of the H 3 6 H 3 4 transition.

Fig. 2
Fig. 2

Room-temperature polarized fluorescence spectra of Tm 3 + : LGM in the NIR by exciting the F 3 2 , 3 multiplets at 690 nm. (a) 0.79 at. % Tm 3 + : LGM ; (b) 5.4 at. % Tm 3 + : LGM .

Fig. 3
Fig. 3

Room-temperature polarized fluorescence spectra of Tm 3 + : LGM in the VIS and NIR by exciting the G 1 4 multiplet at 473 nm. (a), (b) 0.79 at. % Tm 3 + : LGM ; (c), (d) 5.4 at. % Tm 3 + : LGM .

Fig. 4
Fig. 4

Room-temperature polarized fluorescence spectra of Tm 3 + : LGM by exciting the H 3 4 multiplet at 795 nm. (a) 0.79 at. % Tm 3 + : LGM ; (b) 5.4 at. % Tm 3 + : LGM .

Fig. 5
Fig. 5

Polarized stimulated emission cross sections associated with the F 3 4 H 3 6 transition for Tm 3 + : LGM derived by the F–L formula and absorption cross sections for H 3 6 F 3 4 transition.

Fig. 6
Fig. 6

Gain curves of the F 3 4 H 3 6 transition for the Tm 3 + : LGM with different values of inversion population P ( P = 0.1 , 0.2 , , 0.5 ) .

Fig. 7
Fig. 7

Room-temperature fluorescence decay curves of the G 1 4 multiplet under excitation at 473 nm and monitoring at 649 nm. The curves of the 0.79 and 5.4 at. % Tm 3 + : LGM are, respectively, fitted by a linear function and the I–H model.

Fig. 8
Fig. 8

Room-temperature fluorescence decay curves of the H 3 4 multiplet under excitation at 690 nm and monitoring at 800 nm. The curves of the 0.79 and 5.4 at. % Tm 3 + : LGM are, respectively, fitted by a linear function and the hopping model.

Fig. 9
Fig. 9

Room-temperature fluorescence decay curves of the F 3 4 multiplet under excitation at 1213 nm and monitoring at 1790 nm for the 0.79 and 5.4 at. % Tm 3 + : LGM .

Fig. 10
Fig. 10

Q-CW laser output power versus absorbed pump power for the Ti:sapphire end-pumped Tm 3 + : LGM chip. The inset shows the free running emission spectra of Tm 3 + : LGM laser at P ABS = 1.25   W .

Tables (3)

Tables Icon

Table 1 Mean Wavelengths, Experimental and Calculated Absorption Line Strengths of ED Transitions for Tm 3 + : LGM at Room Temperature

Tables Icon

Table 2 J–O Intensity Parameters of Tm 3 + : LGM (in Units of 10 20 cm 2 )

Tables Icon

Table 3 Spontaneous Emission Rates, Fluorescence Branching Ratios, and Radiative Lifetimes of Tm 3 + : LGM

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ EM q ( λ ) = A q λ 5 I q ( λ ) 8 π c n q 2 λ I q ( λ ) d λ ,
σ G q ( λ ) = P σ EM q ( λ ) ( 1 P ) σ GSA q ( λ ) ,
τ f = 0 t I ( t ) d t 0 I ( t ) d t ,
I ( t ) = I ( 0 ) exp [ t τ 0 4 π 3 N A Γ ( 1 3 S ) R C 3 ( t τ 0 ) 3 / S ] ,
I ( t ) = I ( 0 ) exp [ t τ 0 4 π 3 N A Γ ( 1 3 S ) ( C DA t ) 3 / S ( 1 + a 1 x + a 2 x 2 1 + b 1 x ) ( S 3 ) / ( S 2 ) ] ,
I ( t ) = I ( 0 ) exp ( t τ 0 γ t K t ) ,
γ = 4 3 π 3 / 2 N A C DA ,
K = π ( 2 π / 3 ) 5 / 2 N A N D C DA C DD .

Metrics