Abstract

We theoretically investigate the nonlinear propagation of femtosecond pulses in liquid-core photonic crystal fibers filled with CS2. The effect of slow nonlinearity due to reorientational contribution of liquid molecules on broadband supercontinuum generation in the femtosecond regime is studied using an appropriately modified nonlinear Schrödinger equation. To analyze the quality of the pulse, we perform the stability analysis and study coherence of supercontinuum pulse numerically. We show that the response of the slow nonlinearity not only enhances broadening of the pulse and changes the dynamics of the generated solitons, but also increases coherence of the pulse.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  3. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  4. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
    [CrossRef]
  5. R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  6. J. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and P. St. J. Russell, “Ultrahigh resolution optical coherence tomography using super continuum generation in an air-silica microstructured optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  7. A. V. Husakou and J. Hermann, “Supercontinuum generation, four-wave mixing, and fission of higher order soliton in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
    [CrossRef]
  8. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  9. S. Coen, A. Chau, R. Leonardt, J. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation via stimulated Raman scattering and parametric four wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  10. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
    [CrossRef]
  11. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
    [CrossRef]
  12. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
    [CrossRef]
  13. H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fiber,” Optik 121, 783–787 (2010).
    [CrossRef]
  14. C. Yu, J. Liou, S. Huang, and H. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16, 4443–4451 (2008).
    [CrossRef] [PubMed]
  15. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, and G. Roosen, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13, 4786–4791 (2005).
    [CrossRef] [PubMed]
  16. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006).
    [CrossRef] [PubMed]
  17. Y. Sato, R. Morita, and M. Yamashita, “Femtosecond optical pulse compressor using CS2 liquid-core fiber with negative delayed nonlinear response,” Jpn. J. Appl. Phys., Part 1 36, 6768–6774 (1997).
    [CrossRef]
  18. Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys., Part 1 36, 2109–2115 (1997).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  20. R. Vasantha Jayakantha Raja and K. Porsezian, “A fully vectorial effective index method to analyse the propagation properties of microstuctured fiber,” Photonics Nanostruct. Fundam. Appl. 5, 171–177 (2007).
    [CrossRef]
  21. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [CrossRef]

2010 (1)

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fiber,” Optik 121, 783–787 (2010).
[CrossRef]

2008 (1)

2007 (1)

R. Vasantha Jayakantha Raja and K. Porsezian, “A fully vectorial effective index method to analyse the propagation properties of microstuctured fiber,” Photonics Nanostruct. Fundam. Appl. 5, 171–177 (2007).
[CrossRef]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

2002 (5)

2001 (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

J. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and P. St. J. Russell, “Ultrahigh resolution optical coherence tomography using super continuum generation in an air-silica microstructured optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

2000 (2)

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

1997 (2)

Y. Sato, R. Morita, and M. Yamashita, “Femtosecond optical pulse compressor using CS2 liquid-core fiber with negative delayed nonlinear response,” Jpn. J. Appl. Phys., Part 1 36, 6768–6774 (1997).
[CrossRef]

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys., Part 1 36, 2109–2115 (1997).
[CrossRef]

1988 (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

1977 (1)

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Bang, O.

Bjarklev, A.

Chang, H.

Chang, S.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fiber,” Optik 121, 783–787 (2010).
[CrossRef]

Chau, A.

Chinaud, J.

Chudoba, C.

Coen, S.

Delaye, P.

Dudley, J. M.

Eggleton, B. J.

Frey, R.

Fujimoto, J. G.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ghanta, R. K.

Giessen, H.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Grossard, N.

Hansch, T. W.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Hartl, J.

Harvey, J.

Hellwarth, R. W.

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Hermann, J.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Huang, D.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fiber,” Optik 121, 783–787 (2010).
[CrossRef]

Huang, S.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Hermann, “Supercontinuum generation, four-wave mixing, and fission of higher order soliton in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Knight, J. C.

S. Coen, A. Chau, R. Leonardt, J. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation via stimulated Raman scattering and parametric four wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Ko, T. H.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Leonardt, R.

Li, X. D.

Liou, J.

Lotshaw, W. T.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Maillotte, H.

McMorrow, D.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Morita, R.

Y. Sato, R. Morita, and M. Yamashita, “Femtosecond optical pulse compressor using CS2 liquid-core fiber with negative delayed nonlinear response,” Jpn. J. Appl. Phys., Part 1 36, 6768–6774 (1997).
[CrossRef]

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys., Part 1 36, 2109–2115 (1997).
[CrossRef]

Nikolov, N. I.

Porsezian, K.

R. Vasantha Jayakantha Raja and K. Porsezian, “A fully vectorial effective index method to analyse the propagation properties of microstuctured fiber,” Photonics Nanostruct. Fundam. Appl. 5, 171–177 (2007).
[CrossRef]

Provino, L.

Ranka, J. K.

Roosen, G.

Rouvie, A.

Russell, P. St. J.

S. Coen, A. Chau, R. Leonardt, J. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation via stimulated Raman scattering and parametric four wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

J. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and P. St. J. Russell, “Ultrahigh resolution optical coherence tomography using super continuum generation in an air-silica microstructured optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Sato, Y.

Y. Sato, R. Morita, and M. Yamashita, “Femtosecond optical pulse compressor using CS2 liquid-core fiber with negative delayed nonlinear response,” Jpn. J. Appl. Phys., Part 1 36, 6768–6774 (1997).
[CrossRef]

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys., Part 1 36, 2109–2115 (1997).
[CrossRef]

Sørensen, T.

Stentz, A. J.

Teipel, J.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Vasantha Jayakantha Raja, R.

R. Vasantha Jayakantha Raja and K. Porsezian, “A fully vectorial effective index method to analyse the propagation properties of microstuctured fiber,” Photonics Nanostruct. Fundam. Appl. 5, 171–177 (2007).
[CrossRef]

Wadsworth, W. J.

S. Coen, A. Chau, R. Leonardt, J. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation via stimulated Raman scattering and parametric four wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Windeler, R. S.

Wordworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Yamashita, M.

Y. Sato, R. Morita, and M. Yamashita, “Femtosecond optical pulse compressor using CS2 liquid-core fiber with negative delayed nonlinear response,” Jpn. J. Appl. Phys., Part 1 36, 6768–6774 (1997).
[CrossRef]

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys., Part 1 36, 2109–2115 (1997).
[CrossRef]

Yiou, S.

Yu, C.

Yuan, J.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fiber,” Optik 121, 783–787 (2010).
[CrossRef]

Zhang, H.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fiber,” Optik 121, 783–787 (2010).
[CrossRef]

Zhang, R.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys., Part 1 (2)

Y. Sato, R. Morita, and M. Yamashita, “Femtosecond optical pulse compressor using CS2 liquid-core fiber with negative delayed nonlinear response,” Jpn. J. Appl. Phys., Part 1 36, 6768–6774 (1997).
[CrossRef]

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys., Part 1 36, 2109–2115 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Optik (1)

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fiber,” Optik 121, 783–787 (2010).
[CrossRef]

Photonics Nanostruct. Fundam. Appl. (1)

R. Vasantha Jayakantha Raja and K. Porsezian, “A fully vectorial effective index method to analyse the propagation properties of microstuctured fiber,” Photonics Nanostruct. Fundam. Appl. 5, 171–177 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wordworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the LCPCF with air hole diameter d and pitch Λ. The core is filled with CS 2 and has a diameter equal to size of the air hole.

Fig. 2
Fig. 2

Propagation of a 200 fs full width at half-maximum (FWHM) sech pulse in CS 2 -filled LCPCF at 1.2 μ m . The solid and dashed lines represent evolution of pulse in the presence of nonlinearity and absence of nonlinearity, respectively. The circles correspond to the input pulse. The fiber parameters are β 2 = 0.109 ps 2 / m , β 3 = 2.1 × 10 4 ps 3 / m , γ 2 = 0 , and γ = γ 0 . The propagation length L = 1.1807   m .

Fig. 3
Fig. 3

The pulse propagation through CS 2 -filled LCPCF under the influence of slow nonlinear response only. The fiber parameters are β 2 = 0.109 ps 2 / m , β 3 = 2.1 × 10 4 ps 3 / m , μ = 10 ps 1 , γ = 0 , and γ 2 = 6 γ 0 . The propagation length L = 1.1807   m .

Fig. 4
Fig. 4

Calculated spectral broadening of slow nonlinear response in CS 2 -filled LCPCF at 1.2 μ m . The fiber parameters are β 2 = 0.109 ps 2 / m , β 3 = 2.1 × 10 4 ps 3 / m , μ = 10 ps 1 , γ = 0 , and γ 2 = 6 γ 0 . The propagation length L = 1.1807   m .

Fig. 5
Fig. 5

Fundamental soliton propagation of CS 2 -filled LCPCF including slow nonlinearity (solid line). The solid line represents pulse evolution with slow nonlinearity where the decay constant μ = 10 ps 1 and slow nonlinearity γ = 6 γ 0 . The dashed line represents soliton propagation in the absence of slow nonlinearity.

Fig. 6
Fig. 6

The stimulated spectral broadening of the 200 fs FWHM pulse in LCPCF without (dashed line) and with (solid line) slow nonlinearity.

Fig. 7
Fig. 7

Variation of output power deviation of perturbed soliton with unperturbed soliton as a function of power perturbation with (solid line) and without (dashed line) slow nonlinearity.

Fig. 8
Fig. 8

Variation of output power deviation of perturbed soliton with unperturbed soliton as a function of white noise perturbation with (solid line) and without (dashed line) slow nonlinearity.

Fig. 9
Fig. 9

Higher-order (seventh-order) soliton propagation for the LCPCF at 1.2 μ m . (a) Pulse evolution without slow nonlinearity; (b) pulse evolution with slow nonlinearity γ 2 = 6 γ 0 , decay constant μ = 10 ps 1 , and the propagation length L = 0.1771   m .

Fig. 10
Fig. 10

The evolution of seventh-order soliton spectral broadening through LCPCF in the (a) absence and (b) presence of slow nonlinearity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U z + n = 2 3 β n i n 1 n ! n U t n = i γ | U | 2 U + i γ 2 μ U 0 exp ( τ μ ) | U ( t τ ) | 2 d τ ,
n CS 2 ( λ ) = 1.580 826 + 1.523 89 × 10 2 λ 2 + 4.8578 × 10 4 λ 4 8.2863 × 10 5 λ 6 + 1.4619 × 10 5 λ 8 ,
| g 12 ( 1 ) ( λ ) | = | E 1 ( λ ) E 2 ( λ ) [ | E 1 ( λ ) | 2 | E 2 ( λ ) | 2 ] 1 / 2 | .

Metrics