Abstract

We have fabricated optical absorbers based on heterostructures composed of thick metallic films and truncated all-dielectric photonic crystals. Under the tunneling mechanism, the light can enter the heterostructure without reflection and is greatly absorbed due to the strong local-field enhancement in the metallic film. With the increase in the thickness of the metal, the absorbance will tend to unity. Experiments, in good agreement with the simulations, demonstrate a maximum of absorbance close to 98%. Possible methods to realize a wide-angle or/and wideband absorption are also given.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
    [CrossRef] [PubMed]
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  3. F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
    [CrossRef]
  4. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [CrossRef] [PubMed]
  5. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
    [CrossRef]
  6. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
    [CrossRef]
  7. J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
    [CrossRef]
  8. J. W. Dong, G. Q. Liang, Y. H. Chen, and H. Z. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasi-periodic structure,” Opt. Express 14, 2014–2020 (2006).
    [CrossRef] [PubMed]
  9. M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
    [CrossRef]
  10. H.A.Macleod, ed., Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001), p. 581.
  11. X. F. Li, Y. R. Chen, J. Miao, P. Zhou, Y. X. Zheng, L. Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15, 1907–1912 (2007).
    [CrossRef] [PubMed]
  12. I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Opt. 16, 1438–1443 (1977).
    [CrossRef] [PubMed]
  13. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
    [CrossRef] [PubMed]
  14. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16, 15431–15438 (2008).
    [CrossRef] [PubMed]
  15. T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
    [CrossRef]
  16. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008).
    [CrossRef] [PubMed]
  17. G. Sun and C. T. Chan, “Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres,” Phys. Rev. E 73, 036613 (2006).
    [CrossRef]
  18. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
    [CrossRef]
  19. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [CrossRef]
  20. J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
    [CrossRef]
  21. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
    [CrossRef] [PubMed]
  22. G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34, 578–580 (2009).
    [CrossRef] [PubMed]
  23. A.Yariv and P.Yeh, eds., Optical Waves in Crystals (Wiley, 1984).
  24. R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004).
    [CrossRef]
  25. K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).
  26. Special explanation: since the absorption coefficient of the metallic film is generally smaller than that of bulk metal in , we select the refractive indices of silver film in Table .
  27. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
    [CrossRef]
  28. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  29. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  30. C. M. Rappaport and B. J. McCartin, “FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes,” IEEE Trans. Antennas Propag. 39, 345–349 (1991).
    [CrossRef]

2009 (2)

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34, 578–580 (2009).
[CrossRef] [PubMed]

2008 (9)

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16, 15431–15438 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008).
[CrossRef] [PubMed]

2007 (3)

X. F. Li, Y. R. Chen, J. Miao, P. Zhou, Y. X. Zheng, L. Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15, 1907–1912 (2007).
[CrossRef] [PubMed]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

2006 (3)

F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[CrossRef]

J. W. Dong, G. Q. Liang, Y. H. Chen, and H. Z. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasi-periodic structure,” Opt. Express 14, 2014–2020 (2006).
[CrossRef] [PubMed]

G. Sun and C. T. Chan, “Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres,” Phys. Rev. E 73, 036613 (2006).
[CrossRef]

2004 (2)

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004).
[CrossRef]

2003 (1)

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

2001 (1)

H.A.Macleod, ed., Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001), p. 581.

1998 (1)

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

1996 (1)

K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).

1995 (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

1991 (1)

C. M. Rappaport and B. J. McCartin, “FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes,” IEEE Trans. Antennas Propag. 39, 345–349 (1991).
[CrossRef]

1985 (1)

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

1984 (1)

A.Yariv and P.Yeh, eds., Optical Waves in Crystals (Wiley, 1984).

1977 (1)

1976 (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Ajayan, P. M.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Averitt, R. D.

Baglio, S.

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Baryshev, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Baumberg, J. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Bilotti, F.

F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[CrossRef]

Bingham, C. M.

Biswas, R.

R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004).
[CrossRef]

Bloemer, M. J.

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

Bonod, N.

Borisov, A. G.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Bur, J. A.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef] [PubMed]

Busch, K.

K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).

Cappeddu, M. G.

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Chan, C. T.

G. Sun and C. T. Chan, “Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres,” Phys. Rev. E 73, 036613 (2006).
[CrossRef]

K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).

Chen, H.

G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34, 578–580 (2009).
[CrossRef] [PubMed]

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

Chen, L. Y.

Chen, Y. H.

Chen, Y. R.

Ci, L.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef] [PubMed]

Davenport, W.

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

Dong, J. W.

Dorofeenko, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Du, G. Q.

Engheta, N.

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Enoch, S.

Fillard, J. P.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Fu, R. T.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

García De Abajo, F. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Gasiot, J.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Goto, T.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Granovsky, A. B.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Guo, J.

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

Ho, K. M.

R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004).
[CrossRef]

Inoue, M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Jiang, H. T.

G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34, 578–580 (2009).
[CrossRef] [PubMed]

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Koschny, T.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

Landy, N. I.

Larciprete, M. C.

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Lee, Y. P.

Li, H. Q.

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

Li, X. F.

Li, Z. Y.

R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004).
[CrossRef]

Liang, G. Q.

Lin, S. Y.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef] [PubMed]

Lisyansky, A. A.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Liu, X. H.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

López-Rios, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Maystre, D.

McCartin, B. J.

C. M. Rappaport and B. J. McCartin, “FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes,” IEEE Trans. Antennas Propag. 39, 345–349 (1991).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Merzlikin, A. M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Miao, J.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Nucci, L.

F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[CrossRef]

Padilla, W. J.

Padillal, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Popov, E.

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Rappaport, C. M.

C. M. Rappaport and B. J. McCartin, “FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes,” IEEE Trans. Antennas Propag. 39, 345–349 (1991).
[CrossRef]

Ritchie, I. T.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Savalli, N.

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

Scalora, M.

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Shen, Y. F.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Soukoulis, C. M.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).

Sugawara, Y.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Sun, G.

G. Sun and C. T. Chan, “Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres,” Phys. Rev. E 73, 036613 (2006).
[CrossRef]

Sun, Y.

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

Tao, H.

Tayeb, G.

Teperik, T. V.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Vegni, L.

F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[CrossRef]

Vinogradov, A. P.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

Wang, B.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

Wang, H. Z.

Wang, Z. S.

Window, B.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Yang, Z. P.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef] [PubMed]

Yu, J. F.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

Zhang, X.

Zhang, Y. W.

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

Zheng, Y. X.

Zhou, P.

Zhu, Z. Q.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

Zi, J.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

C. M. Rappaport and B. J. McCartin, “FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes,” IEEE Trans. Antennas Propag. 39, 345–349 (1991).
[CrossRef]

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

J. Appl. Phys. (1)

M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004).
[CrossRef]

J. Phys. E (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[CrossRef]

Nano Lett. (1)

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

Phys. Rev. E (2)

J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[CrossRef]

G. Sun and C. T. Chan, “Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres,” Phys. Rev. E 73, 036613 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Other (6)

H.A.Macleod, ed., Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001), p. 581.

A.Yariv and P.Yeh, eds., Optical Waves in Crystals (Wiley, 1984).

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).

Special explanation: since the absorption coefficient of the metallic film is generally smaller than that of bulk metal in , we select the refractive indices of silver film in Table .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of heterostructure A ( DC ) N , where A denotes metal and ( DC ) N represents PhC with N periods. (b) SEM image of the sample BA ( DC ) 15 S . From top to bottom, n B = 1.46 , d B = 50   nm , d A = 56.97   nm , n D = 2.13 , d D = 62.68   nm , n C = n B , n C d C = n D d D , and n S = 1.52 .

Fig. 2
Fig. 2

(a), (b), and (c) show R, T, and A of BA ( DC ) 15 S , respectively. For numerical values (solid lines), the wavelength of tunneling mode λ 0 is 590.2 nm, and R, T, and A at λ 0 are 4 × 10 8 , 0.0539, and 0.9461, respectively. For measured values (open circles with error bars), λ 0 is 586.6 nm, and R, T, and A at λ 0 are 0.048, 0.003, and 0.949, respectively. Inset shows the simulated angular dependence of the absorbance at λ 0 (590.2 nm) for TE and TM waves.

Fig. 3
Fig. 3

Simulated intensities of the electric (solid line) and magnetic (dotted line) fields in the sample BA ( DC ) 15 S at (a) the wavelength of absorption and (b) a wavelength off-absorption. The thickness of Ag in the schematic is five times of its real thickness. All the parameters are the same with those in Fig. 1.

Fig. 4
Fig. 4

The variance of the thickness of silver layer ( d A ) with N.

Fig. 5
Fig. 5

The absorbance A of BA ( DC ) N S with different N in the wavelength range between 570 and 620 nm. The solid lines and circles give the numerical and measured values, respectively. Insets (a) and (b) show the variances of numerical and measured peak values of A, denoted by solid squares and open circles with error bars, respectively, with N and d A , respectively. All the other parameters are the same with those in Fig. 1.

Fig. 6
Fig. 6

(a) Schematic of a heterostructure composed of a metal and a truncated 2D PhC. From top to bottom, the first layer is protection film ( SiO 2 ) with thickness of 43 nm. The second layer is gold with thickness of 39 nm. Below the gold layer, there is a truncated 2D PhC with triangle lattices. The background material of 2D PhC is GaAs whose refractive index is 3.6. The radius of air hole is 111 nm and the lattice constant of 2D PhC is 246 nm. The thickness of the truncated 2D PhC in z direction is 884 nm. Below the truncated 2D PhC, the black zone denotes substrate that is K9 with refractive index of 1.52. (b) and (c) give the distributions of the intensities of electric and magnetic fields inside the structure shown in (a) at the wavelength of 740 nm for a H-polarized wave, respectively.

Fig. 7
Fig. 7

Diagram of the bandgap of the 2D PhC in Fig. 6a when the in-plane wave vector changes in the reduced Brillouin zone in the inset.

Fig. 8
Fig. 8

The variances of reflectance, transmittance, and absorbance of the structure shown in Fig. 6a with the angle of incidence at the wavelength of 740 nm.

Fig. 9
Fig. 9

Simulated absorbance A of BA ( CD ) 7 A ( CD ) 7 S at normal incidence and incident angle of 40° for two polarizations.

Tables (1)

Tables Icon

Table 1 The Refractive Indices of the Silver Film are Provided by Optorun Co., Ltd. [26]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( Z 1 Z ) tan   N K Λ ( η A i + 1 η A i ) tanh   k A i d A + i ( Z η A i + η A i Z ) tan   N K Λ   tanh   k A i d A = 0.
Z i = η A i ,     N K i Λ = k A i d A .

Metrics