Abstract

The potential of slow-light propagation in an insulator–insulator–metal plasmonic waveguide is studied. Due to the high dispersion of the device in the frequency region where the signal group velocity is low, slow-light optical pulses broaden in time and intersymbol interference occurs, limiting the achievable data rates and transmission distance. In order to overcome this problem, we analytically and numerically investigate slow dark solitons in the normal dispersion regime of the waveguide. The storing capability of the waveguide is analyzed from an application point of view.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [CrossRef]
  2. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, 1998).
  3. J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
    [CrossRef] [PubMed]
  4. H. Raether, Surface Plasmons (Springer-Verlag, Berlin 1988).
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
    [CrossRef]
  7. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  8. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
    [CrossRef]
  9. B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
    [CrossRef]
  10. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  12. Yu. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
    [CrossRef]
  13. N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004).
    [CrossRef]
  14. Y. Li and X. Zhang, “SPM of nonlinear surface plasmon waveguides,” Opt. Commun. 281, 5009–5013 (2008).
    [CrossRef]
  15. E. Feigenbaum and M. Orenstein, “Plasmon-soliton,” Opt. Lett. 32, 674–676 (2007).
    [CrossRef] [PubMed]
  16. A. R. Davoyan, I. V. Shadrivov, and Yu. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17, 21732–21737 (2009).
    [CrossRef] [PubMed]
  17. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [CrossRef]
  18. I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007).
    [CrossRef]
  19. A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
    [CrossRef]
  20. C. F. Bohren and D. R. Huffman, “Classical theories of optical constants,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  21. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  22. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
    [CrossRef] [PubMed]
  23. P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
    [CrossRef]
  24. F. Michelotti, L. Dominici, L. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm,” Opt. Lett. 34, 839–841 (2009).
    [CrossRef] [PubMed]
  25. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
    [CrossRef]
  26. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
    [CrossRef] [PubMed]
  27. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [CrossRef]
  28. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010).
    [CrossRef]
  29. J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.
  30. M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).
  31. J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
    [CrossRef]
  32. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
    [CrossRef] [PubMed]

2010 (2)

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010).
[CrossRef]

2009 (7)

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[CrossRef]

F. Michelotti, L. Dominici, L. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm,” Opt. Lett. 34, 839–841 (2009).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, and Yu. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17, 21732–21737 (2009).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[CrossRef]

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

2008 (3)

Y. Li and X. Zhang, “SPM of nonlinear surface plasmon waveguides,” Opt. Commun. 281, 5009–5013 (2008).
[CrossRef]

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[CrossRef] [PubMed]

2007 (6)

E. Feigenbaum and M. Orenstein, “Plasmon-soliton,” Opt. Lett. 32, 674–676 (2007).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[CrossRef] [PubMed]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

2006 (1)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

2005 (3)

J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[CrossRef] [PubMed]

2004 (1)

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004).
[CrossRef]

2002 (1)

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

2001 (2)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

1998 (1)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, 1998).

1993 (1)

Yu. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
[CrossRef]

1991 (1)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

1988 (1)

H. Raether, Surface Plasmons (Springer-Verlag, Berlin 1988).

1986 (1)

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

1983 (1)

C. F. Bohren and D. R. Huffman, “Classical theories of optical constants,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Adams, C. S.

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004).
[CrossRef]

Adegoke, J. A.

Agrawal, G. P.

B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010).
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Arsenin, A. V.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Baets, R.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

Bahoura, M.

Barsi, C.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Biaggio, I.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).

Boardman, A. D.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Bogatcher, S.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, “Classical theories of optical constants,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boltasseva, A.

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

Boyd, R. W.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Brosi, J.-M.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

Chipouras, A.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

Cooper, G. S.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Daniel, B. A.

Danz, N.

Davoyan, A. R.

Descrovi, L.

Diederich, F.

M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

Dionne, J. A.

J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Dominici, L.

Dumon, P.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

Eggleton, B. J.

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[CrossRef] [PubMed]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

Esembeson, B.

M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).

Feigenbaum, E.

Frantzeskakis, D. J.

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004).
[CrossRef]

Freude, W.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[CrossRef] [PubMed]

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Gladun, A. D.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Han, B.

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, “Classical theories of optical constants,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

Jacome, L.

Jiang, C.

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[CrossRef]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kamalakis, T.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007).
[CrossRef]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kivshar, Yu. S.

Koos, C.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[CrossRef] [PubMed]

Kostinski, N.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Krauss, T. F.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

Leiman, V. G.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Leuthold, J.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[CrossRef] [PubMed]

Li, Y.

Y. Li and X. Zhang, “SPM of nonlinear surface plasmon waveguides,” Opt. Commun. 281, 5009–5013 (2008).
[CrossRef]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maradudin, A. A.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Mayy, M.

Menchini, F.

Michelotti, F.

Michinobu, T.

M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[CrossRef] [PubMed]

Monro, T. M.

Naik, G.

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

Neokosmidis, I.

I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007).
[CrossRef]

Noginov, M. A.

Orenstein, M.

Parker, N. G.

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004).
[CrossRef]

Podolskiy, V. A.

Polman, A.

J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Poulton, C.

Proukakis, N. P.

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, Berlin 1988).

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, 1998).

Reynolds, K.

Ritzo, B. A.

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

Schweinsberg, A.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Scimeca, M. L.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).

Seatlock, L. A.

J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Shadrivov, I. V.

Shalaev, V. M.

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

Shen, T. P.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, 1998).

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Sphicopoulos, T.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007).
[CrossRef]

Theocharidis, A.

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

V., S. Afshar

Vallaitis, T.

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

Yu. Fedyanin, D.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Zhang, X.

Y. Li and X. Zhang, “SPM of nonlinear surface plasmon waveguides,” Opt. Commun. 281, 5009–5013 (2008).
[CrossRef]

Zhu, G.

Appl. Phys. B: Lasers Opt. (1)

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[CrossRef]

IEEE J. Quantum Electron. (4)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Yu. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
[CrossRef]

I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007).
[CrossRef]

A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Nat. Photonics (1)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007).
[CrossRef]

Nature (1)

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Li and X. Zhang, “SPM of nonlinear surface plasmon waveguides,” Opt. Commun. 281, 5009–5013 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Quantum Electron. (1)

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Science (1)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006).
[CrossRef] [PubMed]

Other (10)

P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010).
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.

M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, 1998).

C. F. Bohren and D. R. Huffman, “Classical theories of optical constants,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) IIM geometry (not drawn to scale). A metal of permittivity ϵ p is interfaced with a dielectric strip of permittivity ϵ h , width w x = 230 nm , and height h y = 20 nm . A dielectric of permittivity ϵ l ( < ϵ h ) surrounds the strip dielectric and is also interfaced with the metal. The optical signal travels along the z axis. (b) Dispersion relation for the IIM geometry, calculated via the effective index method, for λ p = 564.732 nm , ϵ h = 1.8 2 , ϵ l = 1.68 2 , and ϵ p = 3.9 ω p 2 ω 2 . The inset shows the same plot for a wider spectrum of frequencies ( 1509.96137 1600 nm ) . (c) Plots of the group velocity ( v g , normalized to the speed of light in free space) and group velocity dispersion ( β 2 , in semi-logarithmic scale) with respect to normalized frequency.

Fig. 2
Fig. 2

(a) Temporal distribution of the slow optical signal. Profile of the fundamental black dark soliton, as given by Eq. (13) for u 0 = 1 . Inset: intensity of the dark soliton. (b) Spatial profile of the E y component of the slow optical signal for the same parameters as in Fig. 1, calculated via the effective index method. The signal wavelength is at 1540 nm . The plasmonic waveguide is also shown.

Fig. 3
Fig. 3

(a) Needed waveguide length for storing 100  bits of a 10 Gbit s signal in the device shown in Fig. 1, with respect to frequency. (b) Semi-logarithmic plot of the background power of the dark soliton for dispersion-compensated propagation, with respect to frequency.

Fig. 4
Fig. 4

Profiles of the slow dark soliton ( λ 0 = 1540 nm ) after a propagation distance of 4.36 cm . The SSF algorithm was used for simulating propagation in the lossless case of Eq. (8). (a) Dispersionless propagation for P 0 = 101 mW . (b) 33% broadening for P 0 = 39 mW . (c) 54.5% broadening for linear propagation, with a background power of P 0 = 101 mW . These results indicate that dark solitons can limit the effect of dispersion and allow the transmission of high-bit-rate optical signals in the slow regime of IIM plasmon devices. Slow dark plasmon solitons are, therefore, possible candidates for optical delay line applications.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

tanh ( u h ϵ h h y ) = 1 + u p u l u h u l + u p u h ,
Δ z = T delay 1 v g 1 c 0 .
× H = ϵ 0 ϵ E t + P NL t ,
× E = 1 μ 0 H t ,
E ( x , y , z , t ) = F ( x , y ) A ( z , t ) exp ( i β ( ω ) z ω t ) ,
H ( x , y , z , t ) = G ( x , y ) A ( z , t ) exp ( i β ( ω ) z ω t ) ,
β ( ω ) β 0 + ( ω ω 0 ) β 1 + 1 2 ( ω ω 0 ) 2 β 2 ,
u ξ i 2 2 u τ 2 + i L D L NL | u | 2 u + L D Δ β los u = 0 ,
L D = T 0 2 | β 2 | ,
L NL = A eff n 2 k 0 P ,
A eff = Z 0 2 ϵ h | tot ( E ( x , y ) × H * ( x , y ) ) z ̂ d x d y | 2 nonl | E ( x , y ) | 4 d x d y ,
Δ β los = k 0 k los met | E | 2 d x d y tot | E | 2 d x d y ,
u ( ξ , τ ) = u 0 tanh ( u 0 τ ) exp ( 2 i u 0 2 ξ ) ,

Metrics