Abstract

Surface plasmon polaritons (SPPs) and localized plasmon resonance modes in two-dimensional arrays of silver nanopillars on silver surface were analyzed using the three-dimensional finite-difference time domain method. What we believe to be a new type of plasmon resonance modes at oblique incident angle for p-polarized light was observed in two-dimensional arrays of silver nanopillars in a square lattice. This resonance mode is associated with two SPP-like electric field patterns along the metal surface. We found that this resonance mode is localized and excited by the transverse polarization mode of nanopillars. Using Poynting vector plots, it was observed that the plasmon resonances in arrays of nanopillars are always associated with large energy cyclones near the nanopillars leading to light absorption.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “review article Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. I. Breukelaar, R. Charbonneau, and P. Berinia, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
    [CrossRef]
  3. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008).
    [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  5. J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
    [CrossRef] [PubMed]
  6. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008).
    [CrossRef]
  7. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
    [CrossRef]
  8. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
    [CrossRef]
  9. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction grating for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
    [CrossRef]
  10. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  11. H. Raether, Surface Plasmon on Smooth and Rough Surface and on Grating (Springer-Verlag, 1988).
  12. H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “Geometric dependence of field enhancement in 2D metallic photonic crystals,” Opt. Express 17, 22179–22189 (2009).
    [CrossRef] [PubMed]
  13. R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. R. Soc. London, Ser. A 18, 269–275 (1902).
  14. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am. 31, 213–222 (1941).
    [CrossRef]
  15. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907).
    [CrossRef]
  16. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  17. F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Panneties, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
    [CrossRef]
  18. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
    [CrossRef]
  19. T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polaritons resonance in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
    [CrossRef]
  20. S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).
  21. A. Taflove, Computational Electrodynamics: Finite-Difference Time-Domain Method (Artech House, 1995).
  22. http://www.emexplorer.net.
  23. W. Wunderlich, “Physical constants of poly(methyl methacrylate),” in Polymer Handbook, J.Brandrup, E.H.Immergut, and E.A.Grulke, eds. (Wiley, 1999).
  24. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constant of Solid, E.D.Palik, ed. (Academic, 1985).

2009

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polaritons resonance in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “Geometric dependence of field enhancement in 2D metallic photonic crystals,” Opt. Express 17, 22179–22189 (2009).
[CrossRef] [PubMed]

2008

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

2007

S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).

2006

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction grating for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

I. Breukelaar, R. Charbonneau, and P. Berinia, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

2005

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “review article Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

1999

1998

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

1995

A. Taflove, Computational Electrodynamics: Finite-Difference Time-Domain Method (Artech House, 1995).

1988

H. Raether, Surface Plasmon on Smooth and Rough Surface and on Grating (Springer-Verlag, 1988).

1985

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constant of Solid, E.D.Palik, ed. (Academic, 1985).

1965

1941

1907

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907).
[CrossRef]

1902

R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. R. Soc. London, Ser. A 18, 269–275 (1902).

Atay, T.

J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “review article Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Baroughi, M. F.

Bayat, K.

Berinia, P.

I. Breukelaar, R. Charbonneau, and P. Berinia, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

Bhat, R.

Boroditsky, M.

Bozhevolnyi, S. I.

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polaritons resonance in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

Breukelaar, I.

I. Breukelaar, R. Charbonneau, and P. Berinia, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

Bustarret, E.

Charbonneau, R.

I. Breukelaar, R. Charbonneau, and P. Berinia, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

Coccioli, R.

Dechelette, A.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “review article Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “review article Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Fainman, Y.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008).
[CrossRef]

Fano, U.

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Fournier, T.

Galipeau, D. W.

García-Vidal, F. J.

F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Panneties, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Hessel, A.

Hunter, W. R.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constant of Solid, E.D.Palik, ed. (Academic, 1985).

Hwang, G. M.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Krauss, T. F.

Lederer, F.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Lévêque, G.

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction grating for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

López-Rios, T.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

López-Ríos, T.

Lynch, D. W.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constant of Solid, E.D.Palik, ed. (Academic, 1985).

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).

Martin, O. J. F.

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction grating for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

May, S.

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Mullen, E. H.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008).
[CrossRef]

Nurmikko, A. V.

J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef] [PubMed]

Oliner, A. A.

Pang, L.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008).
[CrossRef]

Panneties, B.

F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Panneties, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Paudel, H. P.

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surface and on Grating (Springer-Verlag, 1988).

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Sánchez-Dehesa, J.

F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Panneties, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Shi, S.

J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef] [PubMed]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polaritons resonance in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

Song, J.

J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove, Computational Electrodynamics: Finite-Difference Time-Domain Method (Artech House, 1995).

Urabe, H.

J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef] [PubMed]

Vrijen, R.

Wood, R. W.

R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. R. Soc. London, Ser. A 18, 269–275 (1902).

Wunderlich, W.

W. Wunderlich, “Physical constants of poly(methyl methacrylate),” in Polymer Handbook, J.Brandrup, E.H.Immergut, and E.A.Grulke, eds. (Wiley, 1999).

Yablonovitch, E.

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

IEEE Sens. J.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008).
[CrossRef]

J. Appl. Phys.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction grating for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

I. Breukelaar, R. Charbonneau, and P. Berinia, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

Nano Lett.

J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “review article Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polaritons resonance in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

Phys. Rev. Lett.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Proc. R. Soc. London, Ser. A

R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. R. Soc. London, Ser. A 18, 269–275 (1902).

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).

A. Taflove, Computational Electrodynamics: Finite-Difference Time-Domain Method (Artech House, 1995).

http://www.emexplorer.net.

W. Wunderlich, “Physical constants of poly(methyl methacrylate),” in Polymer Handbook, J.Brandrup, E.H.Immergut, and E.A.Grulke, eds. (Wiley, 1999).

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constant of Solid, E.D.Palik, ed. (Academic, 1985).

H. Raether, Surface Plasmon on Smooth and Rough Surface and on Grating (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Arrays of cylindrical silver nanopillars in square lattice on silver surface with the period a, thickness t, and diameter d. The arrow shows the direction of incident light and θ is the angle of incidence. The plane of incidence is X Z plane.

Fig. 2
Fig. 2

Intensity of electric field enhancement by silver nanopillars with period of a = 450   nm , diameter of d = 210   nm , and thickness of t = 50   nm , illuminated perpendicularly by 750 nm plane wave. (a) X Z and (b) X Y planes.

Fig. 3
Fig. 3

(a) Specular reflection of electric field at different angles of incident illuminated by 750 nm plane wave, (b) Y Z plane of electric field intensity at 40° incident angle. The photonic crystal consists of 2D arrays of cylindrical silver nanopillars in square lattice of period a = 450   nm , diameter d = 210   nm , and thickness t = 50   nm on silver surface.

Fig. 4
Fig. 4

Reflectance of electric field intensity of p-polarized light from photonic crystal of period a = 450   nm , diameter d = 210   nm , and thickness t = 50   nm . (a) Specular (zero-order) reflection intensity versus incident angles, (b) specular (dark line) and −1 order (light line) at 750 nm wavelength, (c) specular (dark line) and −1 order (light line) at 700 nm wavelength, and (d) specular (dark line) and −1 order (light line) at 900 nm wavelength.

Fig. 5
Fig. 5

(a) z-component of electric field in X Y plane crossing through the top of nanopillar at different instants of a time period at 0° and 40° angles of incidence. (b) z-component of electric field when the two nanopillars were taken in a unit cell of simulation: (i) X Y plane from top of nanopillars, (ii) X Z plane crossing from centers of nanopillars, and (iii) X Z plane crossing between nanopillars.

Fig. 6
Fig. 6

(a) Polarization of nanopillars and metal surface along the x and y axes at the instant of time 0 [see Fig. 5a] and at 40° angle of incidence. (b) Illustrations of transverse polarization mode of a nanopillar.

Fig. 7
Fig. 7

Poynting vector plots in X Z plane of a nanopillar resonating in transverse polarization mode (at 40° incident angle) at (a) 0 and (b) T / 14 instants of a time period. Poynting vector plots at the incident angles of (c) 40° in X Y plane crossing through the top of a nanopillar and (d) 0° in X Z plane crossing through the center of a nanopillar.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β = k o ε d ε m ε d + ε m ,
β = k + 2 π n a x x ̂ + 2 π m a y y ̂ ,

Metrics