Abstract

The effect of nonlinear propagation on the shape of the focal volume has been assessed by in situ plasma emission imaging during the subsurface processing of a commercial phosphate glass. The sample was processed with an elliptically shaped femtosecond-laser beam at 1 kHz repetition rate and scanned transversely with respect to the writing beam axis. As a consequence, optimal conditions for minimizing undesirable nonlinear propagation effects during the production of optical waveguides by direct laser writing have been determined. Under these conditions, it is possible to induce structural transformations and still preserve the focal volume shape associated with the linear propagation regime. While at low pulse energy a single scan laser-written structure does not support a guided mode, the use of multiple scans with minimized nonlinear propagation effects enables the production of optical waveguides. The latter show a significantly improved performance in terms of the refractive index change and propagation losses when compared to single scan waveguides.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass For Photonic Devices: Photoinduced Structures and Their Application (Springer Verlag, 2001).
  2. H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, 2006).
    [CrossRef]
  3. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys. A 81, 1–10 (2005).
    [CrossRef]
  4. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
    [CrossRef] [PubMed]
  5. B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef] [PubMed]
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  7. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516–1518 (2001).
    [CrossRef]
  8. R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
    [CrossRef]
  9. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
    [CrossRef]
  10. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14, 1370–1381 (2008).
    [CrossRef]
  11. C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
    [CrossRef]
  12. S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [CrossRef] [PubMed]
  13. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
    [CrossRef]
  14. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
    [CrossRef]
  15. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
    [CrossRef]
  16. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
    [CrossRef]
  17. V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
    [CrossRef]
  18. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
    [CrossRef] [PubMed]
  19. D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse nonlinear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
    [CrossRef] [PubMed]
  20. A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29, 1126–1128 (2004).
    [CrossRef] [PubMed]
  21. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
    [CrossRef] [PubMed]
  22. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
    [CrossRef]
  23. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
    [CrossRef] [PubMed]
  24. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006).
    [CrossRef] [PubMed]
  25. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
    [CrossRef]
  26. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  27. A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
    [CrossRef]
  28. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [CrossRef]
  29. A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
    [CrossRef]
  30. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [CrossRef]
  31. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
    [CrossRef]
  32. A. Mairaj, H. Rutt, and D. Hewak, “Fabrication and characterization of continuous wave direct UV (λ=244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass,” J. Lightwave Technol. 20, 1578–1584 (2002).
    [CrossRef]

2009 (2)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

2008 (3)

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14, 1370–1381 (2008).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

2007 (3)

V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

2006 (2)

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006).
[CrossRef] [PubMed]

2005 (7)

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
[CrossRef] [PubMed]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse nonlinear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[CrossRef] [PubMed]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys. A 81, 1–10 (2005).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

2004 (2)

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29, 1126–1128 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (1)

2001 (1)

1999 (2)

1998 (1)

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

1996 (1)

1995 (1)

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Ams, M.

Arai, A.

Bennion, I.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14, 1370–1381 (2008).
[CrossRef]

Bhardwaj, V.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Borrelli, N. F.

Bovatsek, J.

Brodeur, A.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Cerullo, G.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[CrossRef]

Cheng, Y.

Chin, S.

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Chin, S. L.

Chiodo, N.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Corkum, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse nonlinear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[CrossRef] [PubMed]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Davis, K. M.

De Silvestri, S.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14, 1370–1381 (2008).
[CrossRef]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
[CrossRef]

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

Dubietis, A.

Dubov, M.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14, 1370–1381 (2008).
[CrossRef]

Eaton, S. M.

Feit, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Fernández, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Ferrer, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Fibich, G.

Fujimoto, J. G.

Gaeta, A. L.

García, J.

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

Gawelda, W.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Gong, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Guizard, S.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Hartl, I.

Herman, P.

Hewak, D.

Hibino, Y.

Hirao, K.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass For Photonic Devices: Photoinduced Structures and Their Application (Springer Verlag, 2001).

Hnatovsky, C.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Homoelle, D.

Ilan, B.

Ippen, E. P.

Jha, A.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Jiang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Juodkazis, S.

H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, 2006).
[CrossRef]

Kar, A. K.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Kawachi, M.

Kazansky, P.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Kohtoku, M.

Kowalevicz, A. M.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[CrossRef]

Liu, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Mairaj, A.

Mao, S.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Mao, X.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Marangoni, M.

Marshall, G. D.

Martin, P.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Masuda, M.

Mazur, E.

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

Mezentsev, V.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14, 1370–1381 (2008).
[CrossRef]

Midorikawa, K.

Minoshima, K.

Misawa, H.

H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, 2006).
[CrossRef]

Mitsuyu, T.

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass For Photonic Devices: Photoinduced Structures and Their Application (Springer Verlag, 2001).

Miura, K.

Nasu, Y.

Naumov, A.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

Osellame, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[CrossRef]

Perry, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Petite, G.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Polli, D.

Pollnau, M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Puerto, D.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass For Photonic Devices: Photoinduced Structures and Their Application (Springer Verlag, 2001).

Quéré, F.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Rajeev, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

Ramponi, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[CrossRef]

Rayner, D.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse nonlinear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[CrossRef] [PubMed]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Rubenchik, A.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Ruiz, A.

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
[CrossRef]

Ruiz De La Cruz, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Russo, R.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Rutt, H.

Schaffer, C. B.

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

Shah, L.

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Shihoyama, K.

Shimotsuma, Y.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Shore, B.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Si, J.

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass For Photonic Devices: Photoinduced Structures and Their Application (Springer Verlag, 2001).

Siegel, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Simova, E.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Smith, C.

Solis, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Spence, D. J.

Stuart, B.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Sugimoto, N.

Sugioka, K.

Sun, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Svelto, O.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

Taccheo, S.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[CrossRef]

Tamosauskas, G.

Taylor, R.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Thomson, R. R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Toyoda, K.

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

Wielandy, S.

Withford, M. J.

Yang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Yoshino, F.

Zhang, H.

Zhou, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Appl. Phys. A (5)

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys. A 81, 1–10 (2005).
[CrossRef]

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93, 17–26 (2008).
[CrossRef]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[CrossRef]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254, 1121–1125 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14, 1370–1381 (2008).
[CrossRef]

J. Appl. Phys. (1)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (2)

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Lab Chip (1)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9, 91–96 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (3)

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Other (2)

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass For Photonic Devices: Photoinduced Structures and Their Application (Springer Verlag, 2001).

H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the experimental setup used for plasma emission imaging during subsurface processing. The femtosecond-laser beam passes through a slit and is focused inside the sample by a microscope objective (M.O.1) while the sample moves at a transversal scanning speed of 100 μ m / s . The plasma emission in the focal region is imaged by a lateral imaging system consisting of another microscope objective (M.O.2), a tube lens (T.L.), and a CCD camera.

Fig. 2
Fig. 2

(a1),(b1),(c1) Plasma emission images obtained for pulses of energies of 9.6 μ J and pulse durations of (a) 100, (b) 250, and (c) 550 fs. In (d), the pulse duration is 250 fs and the pulse energy is 4 μ J . (a2),(b2),(c2),(d2) The corresponding intensity cross sections along the z-axis are shown in the right hand side of the image.

Fig. 3
Fig. 3

White light microscopy transmission images of waveguides produced with 9.6 μ J pulses of durations of (a1) 100, (b1) 250, and (c) 550 fs. (a2) and (b2) are the near-field images of the corresponding guided modes at 1550 nm of the waveguides shown in (a1) and (b1), respectively. The scale is the same in all the images.

Fig. 4
Fig. 4

(a) Refractive index change ( Δ n , dashed line with circles) and upper bound for propagation losses (solid line with squares) at 1440 nm for waveguides written with 4 μ J and 250 fs laser pulses as functions of the number of scans. (b)–(e) White light transmission microscopy and near-field guided mode images at 1550 nm corresponding to the waveguides in (a). The number of scans is indicated in the images.

Tables (1)

Tables Icon

Table 1 Energy Coupling Efficiency Parameter ( η ) Calculated According to Eq. (1) for the Images Shown in Figs. 2(a1), 2(b1), and 2(c1)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = I 0 ( y , z ) I i ( y , z ) d y d z [ ( I 0 ( y , z ) ) 2 d y d z ( I i ( y , z ) ) 2 d y d z ] 1 / 2 ,

Metrics