Abstract

Evolution of the absorption and scattering cross sections, quality-factor (Q-factor), and field enhancement of three-dimensional retardation-based plasmonic resonators being transformed from straight gold nanorod antennas to split-ring resonators by bending is considered. The optical resonances are confirmed to be of plasmonic origin and are specifically shown to be related to the formation of standing waves of short-range surface plasmon polaritons supported by straight and bent nanorods. We verify that by bending nanoantennas it is possible to reduce and ultimately, in the split-ring resonator limit, practically eliminate their scattering at the fundamental resonance, resulting in a substantial increase in the corresponding Q-factors. The decrease in scattering by bending is connected with the attenuation of the electric-dipole response in favor of a magnetic-dipole one, leading to Q-factors exceeding the quasi-static limit by a factor of 1.7. Simultaneously, the structures exhibit local field enhancements of >50.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription