Abstract

Cr4+-doped transparent β-Zn2SiO4 glass-ceramics were prepared by heat treatment on the as-made glasses. It was confirmed from the absorption spectra that Cr4+-doped β-Zn2SiO4 glass-ceramics are indeed a low-field system. The broadband infrared emission centering at 1342 nm with the full width at half-maximum of more than 285 nm was observed by exciting the glass-ceramics with the excitation of an 808 nm laser diode. The observed infrared emission could be attributed to Cr4+ ions at low-field sites in β-Zn2SiO4 glass-ceramics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).
  2. H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1550 to 1600 nm wavelength region,” IEEE Photon. Technol. Lett. 9, 596–598 (1997).
    [CrossRef]
  3. C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
    [CrossRef]
  4. S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
    [CrossRef]
  5. Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370–376 (2000).
    [CrossRef]
  6. T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
    [CrossRef]
  7. M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
    [CrossRef]
  8. M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, R. R. Alfano, G. H. Beall, and N. Borrelli, “Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics with chromium,” J. Opt. Soc. Am. B 21, 2046–2052 (2004).
    [CrossRef]
  9. L. R. Pinckney and G. H. Baell, “Transition element-doped crystal in glass,” Proc. SPIE 4452, 93–99 (2001).
    [CrossRef]
  10. J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [CrossRef]
  11. T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids 220, 139–146 (1997).
    [CrossRef]
  12. X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr (◻) in alumino-silicate glasses,” Opt. Mater. 20, 63–72 (2002).
    [CrossRef]
  13. M. D. Sturge, H. J. Guggenheim, and M. H. L. Pryce, “Antiresonance in the optical spectra of transition-metal ions in crystals,” Phys. Rev. B 2, 2459–2471 (1970).
    [CrossRef]
  14. A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
    [CrossRef]
  15. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).
  16. R. G. Pappalardo, W. J. Miniscalco, T. E. Peters, and K. Lee, “An infrared band emitter at optical-communication wavelengths: Cr-activated Zn2SiO4,” J. Lumin. 55, 87–93 (1993).
    [CrossRef]
  17. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
    [CrossRef]
  18. R. G. Pappalardo, T. E. Peters, W. J. Miniscalco, and E. J. Alexander, “Room-temperature line emission at 1.2 μm from chromium-activated barium ortho-titanate,” J. Lumin. 59, 113–124 (1994).
    [CrossRef]
  19. J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
    [CrossRef]
  20. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986).
    [CrossRef]
  21. J. H. Song, J. Heo, and S. H. Park, “Emission properties of PbO–Bi2O3–Ga2O3–GeO2 glasses doped with Tm3+ and Ho3+,” J. Appl. Phys. 93, 9441–9445 (2003).
    [CrossRef]

2007

M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
[CrossRef]

2004

2003

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

J. H. Song, J. Heo, and S. H. Park, “Emission properties of PbO–Bi2O3–Ga2O3–GeO2 glasses doped with Tm3+ and Ho3+,” J. Appl. Phys. 93, 9441–9445 (2003).
[CrossRef]

2002

X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr (◻) in alumino-silicate glasses,” Opt. Mater. 20, 63–72 (2002).
[CrossRef]

2001

L. R. Pinckney and G. H. Baell, “Transition element-doped crystal in glass,” Proc. SPIE 4452, 93–99 (2001).
[CrossRef]

2000

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370–376 (2000).
[CrossRef]

1997

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1550 to 1600 nm wavelength region,” IEEE Photon. Technol. Lett. 9, 596–598 (1997).
[CrossRef]

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids 220, 139–146 (1997).
[CrossRef]

1994

R. G. Pappalardo, T. E. Peters, W. J. Miniscalco, and E. J. Alexander, “Room-temperature line emission at 1.2 μm from chromium-activated barium ortho-titanate,” J. Lumin. 59, 113–124 (1994).
[CrossRef]

1993

R. G. Pappalardo, W. J. Miniscalco, T. E. Peters, and K. Lee, “An infrared band emitter at optical-communication wavelengths: Cr-activated Zn2SiO4,” J. Lumin. 55, 87–93 (1993).
[CrossRef]

1988

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

1986

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986).
[CrossRef]

1980

A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
[CrossRef]

1970

M. D. Sturge, H. J. Guggenheim, and M. H. L. Pryce, “Antiresonance in the optical spectra of transition-metal ions in crystals,” Phys. Rev. B 2, 2459–2471 (1970).
[CrossRef]

1954

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

Albers, P.

Alexander, E. J.

R. G. Pappalardo, T. E. Peters, W. J. Miniscalco, and E. J. Alexander, “Room-temperature line emission at 1.2 μm from chromium-activated barium ortho-titanate,” J. Lumin. 59, 113–124 (1994).
[CrossRef]

Alfano, R. R.

M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
[CrossRef]

M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, R. R. Alfano, G. H. Beall, and N. Borrelli, “Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics with chromium,” J. Opt. Soc. Am. B 21, 2046–2052 (2004).
[CrossRef]

Andrews, L.

A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
[CrossRef]

Baell, G. H.

L. R. Pinckney and G. H. Baell, “Transition element-doped crystal in glass,” Proc. SPIE 4452, 93–99 (2001).
[CrossRef]

Batchelor, C.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Beall, G. H.

Bergin, F. J.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Borrelli, N.

Bykov, A. B.

M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
[CrossRef]

M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, R. R. Alfano, G. H. Beall, and N. Borrelli, “Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics with chromium,” J. Opt. Soc. Am. B 21, 2046–2052 (2004).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Choi, Y. G.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370–376 (2000).
[CrossRef]

Chung, W. J.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Dai, S. X.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

Donegan, J. F.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Feng, X.

X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr (◻) in alumino-silicate glasses,” Opt. Mater. 20, 63–72 (2002).
[CrossRef]

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

Glynn, T. J.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Guggenheim, H. J.

M. D. Sturge, H. J. Guggenheim, and M. H. L. Pryce, “Antiresonance in the optical spectra of transition-metal ions in crystals,” Phys. Rev. B 2, 2459–2471 (1970).
[CrossRef]

Han, Y. S.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370–376 (2000).
[CrossRef]

Heo, J.

J. H. Song, J. Heo, and S. H. Park, “Emission properties of PbO–Bi2O3–Ga2O3–GeO2 glasses doped with Tm3+ and Ho3+,” J. Appl. Phys. 93, 9441–9445 (2003).
[CrossRef]

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370–376 (2000).
[CrossRef]

Hu, L. L.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

Huber, G.

Imbush, G. F.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Jha, A.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Jiang, Z. H.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

Kamimura, H.

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Kim, K. H.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370–376 (2000).
[CrossRef]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Lee, K.

R. G. Pappalardo, W. J. Miniscalco, T. E. Peters, and K. Lee, “An infrared band emitter at optical-communication wavelengths: Cr-activated Zn2SiO4,” J. Lumin. 55, 87–93 (1993).
[CrossRef]

Lempicki, A.

A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
[CrossRef]

McCollum, B. C.

A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
[CrossRef]

Miniscalco, W. J.

R. G. Pappalardo, T. E. Peters, W. J. Miniscalco, and E. J. Alexander, “Room-temperature line emission at 1.2 μm from chromium-activated barium ortho-titanate,” J. Lumin. 59, 113–124 (1994).
[CrossRef]

R. G. Pappalardo, W. J. Miniscalco, T. E. Peters, and K. Lee, “An infrared band emitter at optical-communication wavelengths: Cr-activated Zn2SiO4,” J. Lumin. 55, 87–93 (1993).
[CrossRef]

Morinaga, K.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids 220, 139–146 (1997).
[CrossRef]

Murata, T.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids 220, 139–146 (1997).
[CrossRef]

Myint, T.

M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
[CrossRef]

Nettel, S. J.

A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
[CrossRef]

Ohishi, Y.

T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
[CrossRef]

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1550 to 1600 nm wavelength region,” IEEE Photon. Technol. Lett. 9, 596–598 (1997).
[CrossRef]

Ono, H.

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1550 to 1600 nm wavelength region,” IEEE Photon. Technol. Lett. 9, 596–598 (1997).
[CrossRef]

Owen, S.

Pappalardo, R. G.

R. G. Pappalardo, T. E. Peters, W. J. Miniscalco, and E. J. Alexander, “Room-temperature line emission at 1.2 μm from chromium-activated barium ortho-titanate,” J. Lumin. 59, 113–124 (1994).
[CrossRef]

R. G. Pappalardo, W. J. Miniscalco, T. E. Peters, and K. Lee, “An infrared band emitter at optical-communication wavelengths: Cr-activated Zn2SiO4,” J. Lumin. 55, 87–93 (1993).
[CrossRef]

Park, S. H.

J. H. Song, J. Heo, and S. H. Park, “Emission properties of PbO–Bi2O3–Ga2O3–GeO2 glasses doped with Tm3+ and Ho3+,” J. Appl. Phys. 93, 9441–9445 (2003).
[CrossRef]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Peters, T. E.

R. G. Pappalardo, T. E. Peters, W. J. Miniscalco, and E. J. Alexander, “Room-temperature line emission at 1.2 μm from chromium-activated barium ortho-titanate,” J. Lumin. 59, 113–124 (1994).
[CrossRef]

R. G. Pappalardo, W. J. Miniscalco, T. E. Peters, and K. Lee, “An infrared band emitter at optical-communication wavelengths: Cr-activated Zn2SiO4,” J. Lumin. 55, 87–93 (1993).
[CrossRef]

Petricevic, V.

M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
[CrossRef]

M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, R. R. Alfano, G. H. Beall, and N. Borrelli, “Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics with chromium,” J. Opt. Soc. Am. B 21, 2046–2052 (2004).
[CrossRef]

Pinckney, L. R.

L. R. Pinckney and G. H. Baell, “Transition element-doped crystal in glass,” Proc. SPIE 4452, 93–99 (2001).
[CrossRef]

Pryce, M. H. L.

M. D. Sturge, H. J. Guggenheim, and M. H. L. Pryce, “Antiresonance in the optical spectra of transition-metal ions in crystals,” Phys. Rev. B 2, 2459–2471 (1970).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Remeika, J. P.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Sharonov, M. Yu.

M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
[CrossRef]

M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, R. R. Alfano, G. H. Beall, and N. Borrelli, “Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics with chromium,” J. Opt. Soc. Am. B 21, 2046–2052 (2004).
[CrossRef]

Shen, S.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Solomon, E. I.

A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
[CrossRef]

Song, J. H.

J. H. Song, J. Heo, and S. H. Park, “Emission properties of PbO–Bi2O3–Ga2O3–GeO2 glasses doped with Tm3+ and Ho3+,” J. Appl. Phys. 93, 9441–9445 (2003).
[CrossRef]

Stark, E.

Stayer, P. R.

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Sturge, M. D.

M. D. Sturge, H. J. Guggenheim, and M. H. L. Pryce, “Antiresonance in the optical spectra of transition-metal ions in crystals,” Phys. Rev. B 2, 2459–2471 (1970).
[CrossRef]

Sugano, S.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Suzuki, T.

T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
[CrossRef]

Takebe, H.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids 220, 139–146 (1997).
[CrossRef]

Tanabe, S.

X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr (◻) in alumino-silicate glasses,” Opt. Mater. 20, 63–72 (2002).
[CrossRef]

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

Tanabe, Y.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Torisaka, M.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids 220, 139–146 (1997).
[CrossRef]

Xu, S. Q.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

Yamada, M.

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1550 to 1600 nm wavelength region,” IEEE Photon. Technol. Lett. 9, 596–598 (1997).
[CrossRef]

Yang, J. H.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

Yang, Z. M.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

Appl. Phys. Lett.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
[CrossRef]

Chem. Phys. Lett.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370–376 (2000).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Caird, S. A. Payne, P. R. Stayer, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1550 to 1600 nm wavelength region,” IEEE Photon. Technol. Lett. 9, 596–598 (1997).
[CrossRef]

J. Alloys Compd.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral Properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311–319 (2003).

J. Appl. Phys.

J. H. Song, J. Heo, and S. H. Park, “Emission properties of PbO–Bi2O3–Ga2O3–GeO2 glasses doped with Tm3+ and Ho3+,” J. Appl. Phys. 93, 9441–9445 (2003).
[CrossRef]

J. Lumin.

R. G. Pappalardo, W. J. Miniscalco, T. E. Peters, and K. Lee, “An infrared band emitter at optical-communication wavelengths: Cr-activated Zn2SiO4,” J. Lumin. 55, 87–93 (1993).
[CrossRef]

R. G. Pappalardo, T. E. Peters, W. J. Miniscalco, and E. J. Alexander, “Room-temperature line emission at 1.2 μm from chromium-activated barium ortho-titanate,” J. Lumin. 59, 113–124 (1994).
[CrossRef]

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

J. Non-Cryst. Solids

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids 220, 139–146 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Soc. Jpn.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

Opt. Commun.

M. Yu. Sharonov, A. B. Bykov, T. Myint, V. Petricevic, and R. R. Alfano, “Spectroscopic study of chromium-doped transparent calcium germinate glass-ceramics,” Opt. Commun. 275, 123–128 (2007).
[CrossRef]

Opt. Mater.

X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr (◻) in alumino-silicate glasses,” Opt. Mater. 20, 63–72 (2002).
[CrossRef]

Phys. Rev. B

M. D. Sturge, H. J. Guggenheim, and M. H. L. Pryce, “Antiresonance in the optical spectra of transition-metal ions in crystals,” Phys. Rev. B 2, 2459–2471 (1970).
[CrossRef]

Phys. Rev. Lett.

A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum, and E. I. Solomon, “Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “Lamb shift”,” Phys. Rev. Lett. 44, 1234–1237 (1980).
[CrossRef]

Proc. SPIE

L. R. Pinckney and G. H. Baell, “Transition element-doped crystal in glass,” Proc. SPIE 4452, 93–99 (2001).
[CrossRef]

Other

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

DTA curve of the as-made glass.

Fig. 2
Fig. 2

XRD patterns of the as-made glass and glass-ceramic heat-treated at 610 ° C- 2   h .

Fig. 3
Fig. 3

Photographs of the as-made glass (left) and glass-ceramic (right).

Fig. 4
Fig. 4

(a) Absorption spectra of the as-made glass (dashed line) and glass-ceramic heat-treated at 610 ° C- 2   h (solid line). (b) Multi-peak fitted absorption spectra of the glass-ceramic heat-treated at 610 ° C- 2   h .

Fig. 5
Fig. 5

(a) Infrared emission spectra of the as-made glass (dashed line) and glass-ceramics heat-treated at 610 ° C- 2   h (solid line) in the case of 808 nm excitation. (b) Multi-peak fitting emission spectra of the glass-ceramic heat-treated at 610 ° C- 2 h o .

Fig. 6
Fig. 6

Fluorescence decay curves of the Cr 4 + -doped β -Zn 2 SiO 4 glass-ceramic.

Tables (2)

Tables Icon

Table 1 Multi-peak Fitting Absorption Spectra of the Glass-Ceramic Heat-Treated at 610 ° C- 2   h (Model: Gauss)

Tables Icon

Table 2 Multi-peak Fitting Emission Spectra and Fluorescence Lifetime of the Glass-Ceramic Heat-Treated at 610 ° C- 2   h (Model: Gauss)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = λ 0 2 η 4 π c n 2 τ ( ln   2 π ) 1 / 2 1 Δ v 1 / 2 ,

Metrics