Abstract

We have performed electromagnetically induced transparency (EIT) and two-photon absorption experiments in ladder-type three-level systems in a hot sodium atomic vapor, using the 3S1/2-3P1/2-4D3/2, 3S1/2-3P3/2-4D3/2,5/2, 3S1/2-3P1/2-5S1/2, and 3S1/2-3P3/2-5S1/2 transitions. In particular, in the most pronounced 3S1/2-3P1/2-4D3/2 system, we have observed quite unique spectral line shapes that are superpositions of sharp dips and peaks, in contrast to ordinary EIT spectra. The peaks and dips have apparently different physical origins, and the line shape can be interpreted as the interference between EIT and two-step excitation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
    [CrossRef] [PubMed]
  2. M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef] [PubMed]
  3. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef] [PubMed]
  4. Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
    [CrossRef] [PubMed]
  5. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
    [CrossRef]
  6. J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
    [CrossRef]
  7. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
    [CrossRef] [PubMed]
  8. B. Anderson, Y. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33, 2029–2031 (2008).
    [CrossRef] [PubMed]
  9. Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77, 061801 (2008).
    [CrossRef]
  10. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
    [CrossRef] [PubMed]
  11. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [CrossRef] [PubMed]
  12. M. A. Kumar and S. Singh, “Electromagnetically induced transparency and slow light in three-level ladder systems: Effect of velocity-changing and dephasing collisions,” Phys. Rev. A 79, 063821 (2009).
    [CrossRef]
  13. S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
    [CrossRef]
  14. R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815 (2009).
    [CrossRef]
  15. F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
    [CrossRef]
  16. M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S–5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
    [CrossRef]
  17. J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
    [CrossRef]
  18. G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
    [CrossRef] [PubMed]
  19. J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
    [CrossRef]
  20. M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
    [CrossRef]
  21. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
    [CrossRef]
  22. A. Lipsich, S. Barreiro, P. Valente, and A. Lezama, “Inspection of a magneto-optical trap via electromagnetically induced absorption,” Opt. Commun. 190, 185–191 (2001).
    [CrossRef]
  23. R. Meshulam, T. Zigdon, A. D. Wilson-Gordon, and H. Friedmann, “Transfer-of-coherence-enhanced stimulated emission and electromagnetically induced absorption in Zeeman split Fg→Fe=Fg−1 atomic transitions,” Opt. Lett. 32, 2318–2320 (2007).
    [CrossRef] [PubMed]
  24. J. Okuma, N. Hayashi, A. Fujisawa, and M. Mitsunaga, “Ultraslow matched-pulse propagation in sodium vapor,” Opt. Lett. 34, 1654–1656 (2009).
    [CrossRef] [PubMed]
  25. J. Okuma, N. Hayashi, A. Fujisawa, M. Mitsunaga, and K. Harada, “Parametric oscillation in sodium vapor by using an external cavity,” Opt. Lett. 34, 698–700 (2009).
    [CrossRef] [PubMed]

2009 (5)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

M. A. Kumar and S. Singh, “Electromagnetically induced transparency and slow light in three-level ladder systems: Effect of velocity-changing and dephasing collisions,” Phys. Rev. A 79, 063821 (2009).
[CrossRef]

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815 (2009).
[CrossRef]

J. Okuma, N. Hayashi, A. Fujisawa, and M. Mitsunaga, “Ultraslow matched-pulse propagation in sodium vapor,” Opt. Lett. 34, 1654–1656 (2009).
[CrossRef] [PubMed]

J. Okuma, N. Hayashi, A. Fujisawa, M. Mitsunaga, and K. Harada, “Parametric oscillation in sodium vapor by using an external cavity,” Opt. Lett. 34, 698–700 (2009).
[CrossRef] [PubMed]

2008 (2)

B. Anderson, Y. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33, 2029–2031 (2008).
[CrossRef] [PubMed]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77, 061801 (2008).
[CrossRef]

2007 (3)

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef] [PubMed]

R. Meshulam, T. Zigdon, A. D. Wilson-Gordon, and H. Friedmann, “Transfer-of-coherence-enhanced stimulated emission and electromagnetically induced absorption in Zeeman split Fg→Fe=Fg−1 atomic transitions,” Opt. Lett. 32, 2318–2320 (2007).
[CrossRef] [PubMed]

2001 (3)

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

A. Lipsich, S. Barreiro, P. Valente, and A. Lezama, “Inspection of a magneto-optical trap via electromagnetically induced absorption,” Opt. Commun. 190, 185–191 (2001).
[CrossRef]

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

2000 (1)

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

1998 (2)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

1996 (1)

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

1995 (4)

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

1991 (1)

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

1974 (3)

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S–5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

Adams, C. S.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Agarwal, G. S.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77, 061801 (2008).
[CrossRef]

B. Anderson, Y. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33, 2029–2031 (2008).
[CrossRef] [PubMed]

Barreiro, S.

A. Lipsich, S. Barreiro, P. Valente, and A. Lezama, “Inspection of a magneto-optical trap via electromagnetically induced absorption,” Opt. Commun. 190, 185–191 (2001).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Biraben, F.

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

Bloembergen, N.

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S–5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef] [PubMed]

Chen, H.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Chen, K. X.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Clarke, J. J.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Cognac, B.

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

Drampyan, R.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815 (2009).
[CrossRef]

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Field, J. E.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Friedmann, H.

Fujisawa, A.

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Gaeta, A. L.

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

Gao, J. Y.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Gawlik, W.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815 (2009).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Grynberg, G.

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

Guo, X. Z.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Hahn, K. H.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Harada, K.

Harris, S. E.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Harshawardhan, W.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

Hayashi, N.

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Jiang, Y.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Jin, S. -Z.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef] [PubMed]

Khadka, U.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

B. Anderson, Y. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33, 2029–2031 (2008).
[CrossRef] [PubMed]

Kumar, M. A.

M. A. Kumar and S. Singh, “Electromagnetically induced transparency and slow light in three-level ladder systems: Effect of velocity-changing and dephasing collisions,” Phys. Rev. A 79, 063821 (2009).
[CrossRef]

Levenson, M. D.

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S–5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

Lezama, A.

A. Lipsich, S. Barreiro, P. Valente, and A. Lezama, “Inspection of a magneto-optical trap via electromagnetically induced absorption,” Opt. Commun. 190, 185–191 (2001).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Li, Y. -Q.

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef] [PubMed]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Liao, P. F.

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

Lipsich, A.

A. Lipsich, S. Barreiro, P. Valente, and A. Lezama, “Inspection of a magneto-optical trap via electromagnetically induced absorption,” Opt. Commun. 190, 185–191 (2001).
[CrossRef]

Meshulam, R.

Mitsunaga, M.

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Okuma, J.

Pustelny, S.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815 (2009).
[CrossRef]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Singh, S.

M. A. Kumar and S. Singh, “Electromagnetically induced transparency and slow light in three-level ladder systems: Effect of velocity-changing and dephasing collisions,” Phys. Rev. A 79, 063821 (2009).
[CrossRef]

Valente, P.

A. Lipsich, S. Barreiro, P. Valente, and A. Lezama, “Inspection of a magneto-optical trap via electromagnetically induced absorption,” Opt. Commun. 190, 185–191 (2001).
[CrossRef]

van Wijngaarden, W. A.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Wang, D.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Wielandy, S.

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

Wilson-Gordon, A. D.

Xiao, M.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77, 061801 (2008).
[CrossRef]

B. Anderson, Y. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33, 2029–2031 (2008).
[CrossRef] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef] [PubMed]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Yan, M.

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Yang, S. H.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Zhang, Y.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77, 061801 (2008).
[CrossRef]

B. Anderson, Y. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33, 2029–2031 (2008).
[CrossRef] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef] [PubMed]

Zhao, B.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Zhu, Y.

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Zigdon, T.

Opt. Commun. (2)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

A. Lipsich, S. Barreiro, P. Valente, and A. Lezama, “Inspection of a magneto-optical trap via electromagnetically induced absorption,” Opt. Commun. 190, 185–191 (2001).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (9)

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77, 061801 (2008).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef] [PubMed]

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

M. A. Kumar and S. Singh, “Electromagnetically induced transparency and slow light in three-level ladder systems: Effect of velocity-changing and dephasing collisions,” Phys. Rev. A 79, 063821 (2009).
[CrossRef]

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815 (2009).
[CrossRef]

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Phys. Rev. Lett. (10)

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S–5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Related energy-level schemes for the ladder-type EIT in sodium vapor. (a) 3 S 1 / 2 - 3 P 1 / 2 - 4 D 3 / 2 ( D 1 - 4 D ) system or 3 S 1 / 2 - 3 P 3 / 2 - 4 D 3 / 2 , 5 / 2 ( D 2 - 4 D ) system. (b) 3 S 1 / 2 - 3 P 1 / 2 - 5 S 1 / 2 ( D 1 - 5 S ) system or 3 S 1 / 2 - 3 P 3 / 2 - 5 S 1 / 2 ( D 2 - 5 S ) system.

Fig. 2
Fig. 2

Schematic of the experimental setup: RDL, ring dye laser; PBS, polarizing beam splitter; HWP, half-wave plate; SMF, single-mode fiber; PD, photodetector; PMT, photomultiplier tube; IF, interference filter; OSC, oscilloscope.

Fig. 3
Fig. 3

Typical probe transmission spectrum (top trace) for D 1 - 4 D system, fluorescence spectrum from the 3 P 1 / 2 level (middle trace), and fluorescence spectrum from the 4 D 3 / 2 level (bottom trace) as a function of probe detuning frequency in the presence of coupling beam. Coupling detuning is 0 GHz.

Fig. 4
Fig. 4

Probe transmission spectra for D 1 - 4 D system when the coupling power is varied as 358, 197, 132, 75, and 17 mW.

Fig. 5
Fig. 5

Probe transmission spectra for D 1 - 4 D system when the probe power is varied as 3.1, 2.1, 1.1, 0.55, and 0.23 mW.

Fig. 6
Fig. 6

Probe transmission spectra for D 1 - 4 D system when the coupling detuning frequency is varied as 1.891, 1.271, 0, 1.071 , and 1.887   GHz .

Fig. 7
Fig. 7

Probe transmission spectrum (top trace) for D 2 - 4 D system, fluorescence spectrum from the 3 P 3 / 2 level (middle trace), and fluorescence spectrum from the 4 D 3 / 2 , 5 / 2 level (bottom trace) as a function of probe detuning frequency in the presence of coupling beam.

Fig. 8
Fig. 8

Probe transmission spectrum (top trace) for D 1 - 5 S system, fluorescence spectrum from the 3 P 1 / 2 level (middle trace), and fluorescence spectrum from the 5 S 1 / 2 level (bottom trace) as a function of probe detuning frequency in the presence of coupling beam.

Fig. 9
Fig. 9

Probe transmission spectrum (top trace) for D 2 - 5 S system, fluorescence spectrum from the 3 P 3 / 2 level (middle trace), and fluorescence spectrum from the 5 S 1 / 2 level (bottom trace) as a function of probe detuning frequency in the presence of coupling beam.

Fig. 10
Fig. 10

Numerical simulation for the probe transmission spectrum based on Eq. (2). Parameters employed are { γ 12 , γ 23 , γ 13 , Γ 2 , Ω c , Ω p , δ c 0 } = 2 π × { 7 , 7.8 , 2.8 , 10 , 20 , 7 , 0 } MHz. Doppler width = 2 π × 1   GHz . α is plotted as a vertical axis. Saturation effect in the EIT term was taken into account.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ ̇ 33 = i 2 Ω c ρ 23 i 2 Ω c ρ 32 Γ 3 ρ 33 ,
ρ ̇ 22 = i 2 Ω c ρ 32 i 2 Ω c ρ 23 + i 2 Ω p ρ 12 i 2 Ω p ρ 21 Γ 2 ρ 22 + Γ 32 ρ 33 ,
ρ ̇ 11 = i 2 Ω p ρ 21 i 2 Ω p ρ 12 + Γ 21 ρ 22 ,
ρ ̇ 12 = ( γ 12 i δ p ) ρ 12 + i 2 Ω p ( ρ 22 ρ 11 ) i 2 Ω c ρ 13 ,
ρ ̇ 23 = ( γ 23 i δ c ) ρ 23 + i 2 Ω c ( ρ 33 ρ 22 ) + i 2 Ω p ρ 13 ,
ρ ̇ 13 = ( γ 13 i δ 0 ) ρ 13 + i 2 Ω p ρ 23 i 2 Ω c ρ 12 ,
α ( δ p 0 ) = α 0 d δ D D ( δ D ) [ L p + | Ω p | 2 | Ω c | 2 / 4 Γ 2 2 γ 12 γ 23 L p 2 L c γ 12 | Ω c | 2 4 R [ 1 ( γ 12 + i δ p ) 2 ( γ 13 + i δ 0 ) ] ] ,

Metrics