Abstract

Starting from the causality of the permittivity and permeability of a medium, we investigate the causality of the propagation constant. We show that a reduced dispersion relation, obtained from the frequency dependence of the propagation constant by neglecting a linear frequency dependent term, obeys causality. The propagation constant is identical to the reduced propagation constant under appropriate limiting values of the physical parameters. We illustrate the causality of the reduced propagation constant through examples of (a) a nonmagnetic material where the permittivity is given by the Lorentz model, (b) a material where the permittivity and permeability are both Lorentz-type, and (c) an effective medium comprising a nonmagnetic material with Lorentz-type permittivity in a dispersionless host medium, where the effective permittivity is given by the Maxwell–Garnett rule. Causality of the propagation constant enables the use of simple operator formalisms to derive the underlying partial differential equations for baseband and envelope wave propagation, as demonstrated through an illustrative example of a negative index medium with gain.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription