Abstract

We theoretically study the interactions between plasmonic and photonic modes within a structure that is composed of two thin corrugated metallic plates, embedded in air. We show that the interactions depend on the symmetry of the interacting modes. This observation is explained by the phase difference between the Fourier components of the two gratings. The phase can be controlled by laterally shifting one grating with respect to the other. Therefore, this relative shift provides an efficient “knob” that allows one to control the interaction between the various modes, resulting in an efficient modulation of light transmission and reflection in the proposed structure. Based on this concept we show that the investigated structure can be used as a tunable plasmonic filter.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  4. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
    [CrossRef]
  5. D. Gérard, L. Salomon, F. de Fornel, and A. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
    [CrossRef]
  6. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
    [CrossRef]
  7. G. I. Stegeman and J. J. Burke, “Long-range surface-plasmons in electrode structures,” Appl. Phys. Lett. 43, 221–223 (1983).
    [CrossRef]
  8. R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  9. J. Yoon, S. Song, and S. Park, “Flat-top surface plasmon-polariton modes guided by double-electrode structures,” Opt. Express 15, 17151–17162 (2007).
    [CrossRef]
  10. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express 17, 19996–20011 (2009).
    [CrossRef]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  12. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  13. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  14. P. Lalanne and G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  15. S. Zhang and T. Tamir, “Rigorous theory of grating-assisted couplers,” J. Opt. Soc. Am. A 13, 2403–2413 (1996).
    [CrossRef]
  16. W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
    [CrossRef]
  17. S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
    [CrossRef]
  18. M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: Experimental results,” Appl. Opt. 42, 6578–6583 (2003).
    [CrossRef]
  19. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
    [CrossRef]
  20. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef]
  21. Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
    [CrossRef]
  22. W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10, 478–483 (2004).
    [CrossRef]
  23. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18, 1479–1481 (2006).
    [CrossRef]
  24. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17, 23544–23555 (2009).
    [CrossRef]
  25. W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
    [CrossRef]
  26. D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
    [CrossRef]
  27. Q. Cao and P. Lalanne, “Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef]
  28. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
    [CrossRef]
  29. A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17, 14270–14280 (2009).
    [CrossRef]
  30. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating–waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
    [CrossRef]

2009 (4)

2008 (2)

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

2007 (2)

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

J. Yoon, S. Song, and S. Park, “Flat-top surface plasmon-polariton modes guided by double-electrode structures,” Opt. Express 15, 17151–17162 (2007).
[CrossRef]

2006 (1)

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18, 1479–1481 (2006).
[CrossRef]

2004 (5)

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10, 478–483 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[CrossRef]

R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
[CrossRef]

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

2003 (3)

M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: Experimental results,” Appl. Opt. 42, 6578–6583 (2003).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

Q. Cao and P. Lalanne, “Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

2001 (1)

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

2000 (1)

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

1997 (1)

1996 (5)

1995 (1)

1994 (1)

1983 (1)

G. I. Stegeman and J. J. Burke, “Long-range surface-plasmons in electrode structures,” Appl. Phys. Lett. 43, 221–223 (1983).
[CrossRef]

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Åslund, M.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Benisty, H.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Brongersma, M.

Burke, J. J.

G. I. Stegeman and J. J. Burke, “Long-range surface-plasmons in electrode structures,” Appl. Phys. Lett. 43, 221–223 (1983).
[CrossRef]

Canning, J.

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

Capasso, F.

Catrysse, P.

Chen, Z.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

de Fornel, F.

De La Rue, R. M.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

de Sterke, C. M.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Desiatov, B.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef]

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Ding, Y.

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18, 1479–1481 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Fainman, Y.

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10, 478–483 (2004).
[CrossRef]

Friesem, A. A.

Gaylord, T. K.

Gérard, D.

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Goykhman, I.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef]

Grann, E. B.

Hooper, I. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

Hooper, R.

R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

Houdré, R.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Huang, W.

Judge, A.

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Kim, S.

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Krauss, T. F.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

P. Lalanne and G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
[CrossRef]

Levy, U.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef]

A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17, 14270–14280 (2009).
[CrossRef]

Li, L.

Loncar, M.

Magnusson, R.

H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17, 23544–23555 (2009).
[CrossRef]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18, 1479–1481 (2006).
[CrossRef]

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Moharam, M. G.

Morris, G.

Nakagawa, W.

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10, 478–483 (2004).
[CrossRef]

Oesterle, U.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Olivier, S.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Park, S.

Poladian, L.

Pommet, D. A.

Preist, T. W.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Rattier, M.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Rosenblatt, D.

Salomon, L.

Sambles, J. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Sambles, R. J.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

Selker, M.

Sharon, A.

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Smith, C. J. M.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Song, S.

Stegeman, G. I.

G. I. Stegeman and J. J. Burke, “Long-range surface-plasmons in electrode structures,” Appl. Phys. Lett. 43, 221–223 (1983).
[CrossRef]

Tamir, T.

Tan, W. -C.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Weisbuch, C.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Woolf, D.

Y. Song, H.

Yanai, A.

Yoon, J.

Zayats, A.

Zayats, A. V.

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[CrossRef]

Zhang, S.

Zia, R.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. I. Stegeman and J. J. Burke, “Long-range surface-plasmons in electrode structures,” Appl. Phys. Lett. 43, 221–223 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10, 478–483 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18, 1479–1481 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

J. Opt. Soc. Am. A (8)

Nano Lett. (1)

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. A (1)

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Phys. Rev. B (6)

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of an IMIMI structure. (a) Flat interfaces. (b) Outward grating modulation. (c) Inward grating modulation. (d) Non-homogeneous dielectric environment with inward grating modulation.

Fig. 2
Fig. 2

Absorption as a function of the incident wavelength and H A for three different relative shifts between the metal plates for the case of outward pointing gratings as shown in Fig. 1b. (a) S / L = 0 , (b) S / L = 0.25 , (c) S / L = 0.5 .

Fig. 3
Fig. 3

Normalized real part of the magnetic field distribution ( H y ) calculated at λ = 600   nm and S / L = 0 for (a) SRS mode ( H A = 137.5   nm ) , (b) FPM ( H A = 248.5   nm ) , (c) TM 1 mode ( H A = 293   nm ) . The square rectangles define the boundaries of the metallic grating ridges and the metallic plates.

Fig. 4
Fig. 4

Absorption as a function of the incident wavelength and H A for three different relative shifts between the metal plates for the case of inward pointing gratings as shown in Fig. 1c. (a) S / L = 0 , (b) S / L = 0.25 , (c) S / L = 0.5 . (d) Schematic drawing of the supported modes as they would approximately appear with no inter-modal interaction. The schematic curves are superimposed on the S / L = 0 scenario that is also shown in Fig. 3a. The green, blue, and white lines represent SRSPP modes, FPM, and WGM, respectively (both symmetric and antisymmetric).

Fig. 5
Fig. 5

Logarithmic scaled plot of the absorption as function of the incident wavelength and the normalized transverse wavevector k X / K for the following three relative shifts: (a) S / L = 0 , (b) S / L = 0.25 . The SRS, SRA, LRS, and FPM are designated at k X = 0 (from top to bottom) with green, purple, white, and black dots, respectively. (c) S / L = 0.5 .

Fig. 6
Fig. 6

The absorption as function of the incident wavelength and the plate separation under normally incident light for the same structure as in Fig. 5. The white dashed line corresponds to the case of H A = 190   nm at k X = 0 plotted in Fig. 5. Three relative shifts were considered: (a) S / L = 0 , (b) S / L = 0.25 , (c) S / L = 0.5 .

Fig. 7
Fig. 7

(a) Reflectivity and (b) transmissivity as functions of the incident wavelength.

Fig. 8
Fig. 8

(a) Reflectivity, (b) transmissivity, and (c) absorption as functions of the incident wavelength, for the double plate embedded in an inhomogeneous dielectric index configuration.

Tables (1)

Tables Icon

Table 1 Phases of the Three Modes and Phase Matching between the Different Modes for Three Values of Relative Grating Shift

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tanh ( k D H A 2 ) = k D k M ε D ε M + ( k M ε M ) 2 tanh ( k M H M ) k D k M ε D ε M + ( k D ε D ) 2 tanh ( k M H M ) ,
ε h = [ ( ε M ε D ) sin ( π h d / L ) / ( π h ) ] exp ( j 2 π h S / L ) ,

Metrics