Abstract

Interference between two perpendicular surface plasmon polariton (SPP) beams was studied using a leakage radiation microscope, which allows for the observation of SPP propagation without disturbing the two-dimensional interference pattern formed at the region where the beams cross each other. Interference fringes were observed at the image plane of the microscope. Experimental results were discussed using both classical and quantum descriptions of light. Features observed in the Fourier-plane image directly demonstrate that, in correspondence with the widespread quantum description of light, photons do not propagate following the classical lines of electromagnetic energy flow.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy

Yannick Sonnefraud, Sarp Kerman, Giuliana Di Martino, Dang Yuan Lei, and Stefan A. Maier
Opt. Express 20(5) 4893-4902 (2012)

Surface plasmon polariton beams from an electrically excited plasmonic crystal

Damien Canneson, Eric Le Moal, Shuiyan Cao, Xavier Quélin, Hervé Dallaporta, Gérald Dujardin, and Elizabeth Boer-Duchemin
Opt. Express 24(23) 26186-26200 (2016)

Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?

Jiayuan Wang, Chenglong Zhao, and Jiasen Zhang
Opt. Lett. 35(12) 1944-1946 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription