Abstract

Interference between two perpendicular surface plasmon polariton (SPP) beams was studied using a leakage radiation microscope, which allows for the observation of SPP propagation without disturbing the two-dimensional interference pattern formed at the region where the beams cross each other. Interference fringes were observed at the image plane of the microscope. Experimental results were discussed using both classical and quantum descriptions of light. Features observed in the Fourier-plane image directly demonstrate that, in correspondence with the widespread quantum description of light, photons do not propagate following the classical lines of electromagnetic energy flow.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
    [CrossRef]
  2. J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
    [CrossRef]
  3. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
    [CrossRef]
  4. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
    [CrossRef]
  5. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
    [CrossRef]
  6. A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010).
    [CrossRef]
  7. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  8. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  9. R. D. Prosser, “The interpretation of diffraction and interference in terms of energy flow,” Int. J. Theor. Phys. 15, 169–180 (1976).
    [CrossRef]
  10. R. D. Prosser, “Quantum theory and the nature of interference,” Int. J. Theor. Phys. 15, 181–193 (1976).
    [CrossRef]
  11. J. P. Wesley, “A resolution of the classical wave-particle problem,” Found. Phys. 14, 155–170 (1984).
    [CrossRef]
  12. A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. (N.Y.) 325, 763–784 (2010).
    [CrossRef]
  13. D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables I,” Phys. Rev. 85, 166–179 (1952).
    [CrossRef]
  14. D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables II,” Phys. Rev. 85, 180–193 (1952).
    [CrossRef]
  15. C. Philippidis, D. Bohm, and R. D. Kaye, “The Aharonov–Bohm effect and the quantum potential,” Nuovo Cimento 71B, 75–88 (1982).
    [CrossRef]
  16. P. R. Holland, The Quantum Theory of Motion: An Account of the Broglie–Bohm Causal Interpretation of Quantum Mechanics (Cambridge Univ. Press, 1993).
    [CrossRef]
  17. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Clarendon, 1958).
  18. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol. II.
  19. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd ed. (Pearson Prentice Hall, 2007).

2010

A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010).
[CrossRef]

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. (N.Y.) 325, 763–784 (2010).
[CrossRef]

2009

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

2008

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

2007

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

2006

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

1984

J. P. Wesley, “A resolution of the classical wave-particle problem,” Found. Phys. 14, 155–170 (1984).
[CrossRef]

1982

C. Philippidis, D. Bohm, and R. D. Kaye, “The Aharonov–Bohm effect and the quantum potential,” Nuovo Cimento 71B, 75–88 (1982).
[CrossRef]

1976

R. D. Prosser, “The interpretation of diffraction and interference in terms of energy flow,” Int. J. Theor. Phys. 15, 169–180 (1976).
[CrossRef]

R. D. Prosser, “Quantum theory and the nature of interference,” Int. J. Theor. Phys. 15, 181–193 (1976).
[CrossRef]

1952

D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables I,” Phys. Rev. 85, 166–179 (1952).
[CrossRef]

D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables II,” Phys. Rev. 85, 180–193 (1952).
[CrossRef]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Bernussi, A. A.

A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

Bohm, D.

C. Philippidis, D. Bohm, and R. D. Kaye, “The Aharonov–Bohm effect and the quantum potential,” Nuovo Cimento 71B, 75–88 (1982).
[CrossRef]

D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables II,” Phys. Rev. 85, 180–193 (1952).
[CrossRef]

D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables I,” Phys. Rev. 85, 166–179 (1952).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Bouhelier, A.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Božic, M.

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. (N.Y.) 325, 763–784 (2010).
[CrossRef]

Chesnutt, C.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

Colas des Francs, G.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Davidovic, M.

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. (N.Y.) 325, 763–784 (2010).
[CrossRef]

Dereux, A.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Dirac, P. A. M.

P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Clarendon, 1958).

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Drezet, A.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Ebbesen, T. W.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Feynman, R. P.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol. II.

Frisbie, S. P.

A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

Galler, N.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Genet, C.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Gonzàlez, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Grandidier, J.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Grave de Peralta, L.

A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Holland, P. R.

P. R. Holland, The Quantum Theory of Motion: An Account of the Broglie–Bohm Causal Interpretation of Quantum Mechanics (Cambridge Univ. Press, 1993).
[CrossRef]

Holtz, M. E.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

Kaye, R. D.

C. Philippidis, D. Bohm, and R. D. Kaye, “The Aharonov–Bohm effect and the quantum potential,” Nuovo Cimento 71B, 75–88 (1982).
[CrossRef]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Krishnan, A.

A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

Laluet, J. -Y.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Leighton, R. B.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol. II.

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Markey, L.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Massenot, S.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Miret-Artés, S.

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. (N.Y.) 325, 763–784 (2010).
[CrossRef]

Pedrotti, F. L.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd ed. (Pearson Prentice Hall, 2007).

Pedrotti, L. M.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd ed. (Pearson Prentice Hall, 2007).

Pedrotti, L. S.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd ed. (Pearson Prentice Hall, 2007).

Philippidis, C.

C. Philippidis, D. Bohm, and R. D. Kaye, “The Aharonov–Bohm effect and the quantum potential,” Nuovo Cimento 71B, 75–88 (1982).
[CrossRef]

Prosser, R. D.

R. D. Prosser, “Quantum theory and the nature of interference,” Int. J. Theor. Phys. 15, 181–193 (1976).
[CrossRef]

R. D. Prosser, “The interpretation of diffraction and interference in terms of energy flow,” Int. J. Theor. Phys. 15, 169–180 (1976).
[CrossRef]

Quidant, R.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Renger, J.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Sands, M.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol. II.

Sanz, A. S.

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. (N.Y.) 325, 763–784 (2010).
[CrossRef]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

Stepanov, A. L.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Weeber, J. -C.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Wesley, J. P.

J. P. Wesley, “A resolution of the classical wave-particle problem,” Found. Phys. 14, 155–170 (1984).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Ann. Phys. (N.Y.)

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. (N.Y.) 325, 763–784 (2010).
[CrossRef]

Appl. Phys. Lett.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010).
[CrossRef]

Found. Phys.

J. P. Wesley, “A resolution of the classical wave-particle problem,” Found. Phys. 14, 155–170 (1984).
[CrossRef]

IEEE Photonics Journal

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1, 153–162 (2009).
[CrossRef]

Int. J. Theor. Phys.

R. D. Prosser, “The interpretation of diffraction and interference in terms of energy flow,” Int. J. Theor. Phys. 15, 169–180 (1976).
[CrossRef]

R. D. Prosser, “Quantum theory and the nature of interference,” Int. J. Theor. Phys. 15, 181–193 (1976).
[CrossRef]

Mater. Sci. Eng., B

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220–229 (2008).
[CrossRef]

New J. Phys.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Nuovo Cimento

C. Philippidis, D. Bohm, and R. D. Kaye, “The Aharonov–Bohm effect and the quantum potential,” Nuovo Cimento 71B, 75–88 (1982).
[CrossRef]

Phys. Rev.

D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables I,” Phys. Rev. 85, 166–179 (1952).
[CrossRef]

D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables II,” Phys. Rev. 85, 180–193 (1952).
[CrossRef]

Other

P. R. Holland, The Quantum Theory of Motion: An Account of the Broglie–Bohm Causal Interpretation of Quantum Mechanics (Cambridge Univ. Press, 1993).
[CrossRef]

P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Clarendon, 1958).

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol. II.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd ed. (Pearson Prentice Hall, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top view photograph of the surface of a fabricated sample. The dashed circles illustrate the position of the focused spots. Added arrows indicate the direction of propagation of the launched SPP beams.

Fig. 2
Fig. 2

Schematic of the expected (a) sample surface emission and (b) BFP images in the described experiments. (c) Calculated lines of energy flux in the crossing area. Arrows in (b) and (c) indicate the direction of propagation of the electromagnetic energy.

Fig. 3
Fig. 3

(a) Sample surface emission and (b) BFP images obtained with a leakage radiation microscope. Arrows were added to guide the eyes.

Fig. 4
Fig. 4

Magnified view of (a) sample surface emission and (b) BFP images corresponding to the beams’ crossing region. Arrows were added to guide the eyes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ p 2 h λ ,
Δ x 2 2 λ .

Metrics